• Title/Summary/Keyword: control vibration

Search Result 4,113, Processing Time 0.037 seconds

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.809-815
    • /
    • 2009
  • The previous work(Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the beam-forming measurement system(B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

Performance Investigation of Semi-Active Damper Considering Mass Modeling of Functional Fluid (작동유체 질량을 고려한 유연우주트러스구조물 제진용 반능동 댐퍼의 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun;Lee, Kyong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.450-456
    • /
    • 2009
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. In this paper, performance investigation of semi-active damper considering a mass modeling of functional fluid inside of the damper has been performed. Numerical investigation results confirmed that the damper model considering the fluid mass is effective for vibration suppression performance at a relatively low viscosity range of functional fluid. Based on the analysis results, design method to enhance the performance of semi-active damper has been proposed.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Active vibration control: considering effect of electric field on coefficients of PZT patches

  • Sharma, Sukesha;Vig, Renu;Kumar, Navin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1091-1105
    • /
    • 2015
  • Piezoelectric coefficient and dielectric constant of PZT-5H vary with electric field. In this work, variations of these coefficients with electric field are included in finite element modelling of a cantilevered plate instrumented with piezoelectric patches. Finite element model is reduced using modal truncation and then converted into state-space. First three modal displacements and velocities are estimated using Kalman observer. Negative first modal velocity feedback is used to control the vibrations of the smart plate. Three cases are considered v.i.z case 1: in which variation of piezoelectric coefficient and dielectric constant with electric field is not considered in finite element model and not considered in Kalman observer, case 2: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model and not considered in Kalman observer and case 3: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model as well as in Kalman observer. Simulation results show that appreciable amount of change would appear if variation of piezoelectric coefficient and dielectric constant with r.m.s. value of electric field is considered.

Dynamic Characteristic Analysis and Position Control for High Density Optical Head Using Bimorph PZT (고밀도 광학헤드를 위한 Bimorph 압전 액추에이터의 동특성 해석 및 위치제어)

  • Park, Tae-Wook;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Kwon, Young-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.12-19
    • /
    • 2005
  • This paper proposed a dual actuator using Bimorph PZT for information storage device based on prove array NSOM(near-field scanning optical microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual Bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(finite element analysis), and compared with experimental results. Different control algorithms were used for two Bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method (실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF

How to make spatially focused sound shape: wavenumber spectrum matching (공간 상에 원하는 음장형상을 만드는 방법)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1014-1017
    • /
    • 2007
  • Sound focusing technologies has been studied for various purposes from early 1990s. As a result, these technologies make us possible to apply in many uses. For example, we can treat tumors using focused ultrasonic waves without surgical knife and communicate in the ocean using time reversal array. Also applications for personal audio system become issues. Recently, as technologies are developing, in some applications, needs for regional focusing become increasing because previously suggested focusing methods, such as phase conjugation, time reversal and inverse filtering, were all about a point focusing. Therefore, studies on regional focusing method are essentially needed. Regional focusing method was firstly mentioned by Choi and Kim in 2002: acoustic contrast control. However, in regional focusing, physical interpretations between control variables and results are still not easy because of its complexity. In this regard, we tried to understand the relations between control variables and results in wavenumber domain and suggested a solution method for regional focusing: wavenumber spectrum matching. We also showed how to make spatially focused sound shape using the suggested method from the simplest case: line focusing.

  • PDF

An Experimental Study on the Control of Duration time of Impulse Noise from a High Voltage COS Fuse (고전압 COS 퓨즈로부터 방사된 충격성 소음의 지속시간 제어에 관한 실험적 연구)

  • Song, Hwa-Young;Kim, Deok-Han;Lee, Jong-Suk;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.258-261
    • /
    • 2006
  • This study introduces the control of duration time of impulse noises emitted from a high voltage COS fuse of a transformer. When a high voltage COS fuse becomes a short circuit by the over current, the peak sound pressure level over 150 dB(A) is generated at the distance of 2m from a COS Fuse. For the purpose of the reduction of impulse noise, in this study, the reactive type silencer has been utilized. And also electrical interrupting test was experimented. From the experimental results, the reactive type silencer has been shown to have the noise reduction of about 13 dB(A). It has been found that the electrical interception performance of the COS fuse was related to the control of the duration time of impulse noise.

  • PDF

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System - (공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 -)

  • Park, Yong-Hwan;Shin, Heung-Chul;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF