• Title/Summary/Keyword: control vibration

Search Result 4,113, Processing Time 0.037 seconds

Active Control for Seismic Response Reduction Using Probabilistic Neural Network (지진하중을 받는 구조물의 능동제어를 위한 확률신경망 이론)

  • Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu;Choi, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • Recently structures become longer and higher because of the developments of new materials and construction techniques. However, such modern structures are susceptible to excessive structural vibrations, which may induce problems of serviceability and structural damages. In this paper we attempt to control structural vibration using the probabilistic neural network(PNN) and the artificial neural network(ANN) based on the training pattern that consist of only the structural state vector and the control force. The state vectors of the structure and control forces made by linear quadratic regulator(LQR) algorithm are used for training pattern of PNN and ANN. The proposed algorithm is applied for the vibration control of the three story shear building under Northridge earthquake. Control results by the proposed PNN and ANN are compared with each other.

Vibration Control of CD-ROM Feeding System Using ER Fluids (ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어)

  • 김형규;임수철;최승복;박영필
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1999
  • This paper presents vibration control of a drive feeding system consisting of a new type of CD-ROM(compact discread only memory) mount using electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for ER fluid. and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. Following the formulating the sky-hook controller, computer simulation is undertaken in order to evaluate vibration suppression of the feeding system subjected to various disturbances(excitations).

  • PDF

A Case Study on Vibration Control Method at Urban Area Using FINECKER Plus (FINECKER Plus를 이용한 도심지 진동제어 시공사례)

  • Min Hyung-Dong;Jeong Min-Su;Park Yun-Seok;Hwang Ui-Jin;Park Jun-Ho
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • There are many restrictions with a rock breaking method by using explosives in the urban area due to such safety problems as vibration, noise, and flying rock. Therefore, the use of FINECKER Plus which is mainly used as a rock breaking method (Ministry of Construction and Transportation, 2003) is gradually increasing. Accordingly, construction cases applying FINECKER Plus to the construction sites in the urban area was introduced in case studies. In addition, a comparative test on the same volume of charge applied to 360g of 1 new product 1 set and 180g of the existing FlNECKER Plus 2 sets was conducted. As a result of the test, the two cases were equivalent in breaking efficiency and the level of noise and vibration, and as for the method, the working time decreased by 32%, thus, it was proven to be excellent in terms of construction.

Optimal Design of New Magnetorheological Mount for Diesel Engines of Ships (선박용 디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents an optimal design of a magnetorheological(MR) fluid-based mount(MR mount) that can be used for to vibration control in diesel engines of ships. In this work, a mount that uses mixed-modes(squeeze mode, flow mode, and shear mode) is proposed and designed. To determine the actuating damping force of the MR mount required for efficient vibration control, the excitation force from a diesel engine is analyzed. In this analysis, a model of a V-type engine is considered. The relationship between the velocity and pressure of gas in terms of the torque acting on the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force, the appropriate size of the MR mount is designed. In addition, to achieve the maximum actuating force under geometric constraints, design optimization is undertaken using the ANSYS parametric design language software. Through magnetic density analysis, optimal design parameters such as the bottom gap and radius of coil are determined.

Effect of Vibration on Trabecualr Bone of OVX Rats (기계적 자극이 난소 제거한 쥐 해면골에 미치는 영향 분석)

  • Ko C.Y.;Lee T.W.;Woo D.G.;Kim H.S.;Kim C.H.;Lee B.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.183-184
    • /
    • 2006
  • Some researchers proposed positive effects of whole body vibration (WBV) on osteoporotic trabecular bones of animals. In the present study, the correlation between the improvement of morphological characteristics and the effect of WBV was investigated and analyzed in OVX rats. The rats were randomly assigned to 5 groups: control, sham, WBV 17Hz, WBV 30Hz and WBV 45Hz. The WBV groups were exercised on a vibration platform (magnitude : $1mm_{peak-peak}$, frequency : 17Hz, 30Hz and 45Hz, 30 minutes/day for 5 days/week). The 4th lumbar on rats was scanned by In-vivo Micro-CT at the week 0(just before WBV) and the week 8(after WBV). Structural parameters of the 4th lumbar, based on two dimensional (2D) scan image data, were investigated and analyzed. The quantitative decrement rate of trabecular bone on WBV groups with 30Hz and 45Hz were lower than control and sham groups. The results showed the positive effect of WBV on osteoporotic bones of OVX rats.

  • PDF

Effect of Vibration on Trabecualr Bone of OVX Rats (기계적 자극이 난소 제거한 쥐 해면골에 미치는 영향 분석)

  • Ko C.Y.;Lee T.W.;Woo D.G.;Kim H.S.;Kim C.H.;Lee B.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.649-650
    • /
    • 2006
  • Some researchers proposed positive effects of whole body vibration (WBV) on osteoporotic trabecular bones of animals. In the present study, the correlation between the improvement of morphological characteristics and the effect of WBV was investigated and analyzed in OVX rats. The rats were randomly assigned to 5 groups: control, sham, WBV 17Hz, WBV 30Hz and WBV 45Hz. The WBV groups were exercised on a vibration platform (magnitude $1mm_{peak-peak}$, frequency : 17Hz, 30Hz and 45Hz, 30 minutes/day for 5 days/week). The 4th lumbar on rats was scanned by In-vivo Micro-CT at the week 0(iust before WBV) and the week 8(after WBV). Structural parameters of the 4th lumbar, based on two dimensional (2D) scan image data, were investigated and analyzed. The quantitative decrement rate of trabecular bone on WBV groups with 30Hz and 45Hz were lower than control and sham groups. The results showed the positive effect of WBV on osteoporotic bones of OVX rats.

  • PDF

Optimal Design of New MR Mount for Diesel Engine of Ship (선박디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.93-99
    • /
    • 2012
  • This paper presents an optimal design of magnetorheological (MR) fluid based mount (MR mount in short) which can be applicable to vibration control of diesel engine of ship. In this work, a mixed - mode including squeeze mode, flow mode and shear mode is proposed and designed. In order to determine actuating damping force of MR mount required for efficient vibration control, excitation force from diesel engine is analyzed. In this analysis, a model of V-type engine is considered and the relationship between velocity and pressure of gas in torque of the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force an appropriate size of MR mount is designed. In addition, in order to achieve maximum actuating force with geometric constraints design optimization is undertaken using ANSYS software. Through the magnetic density analysis, optimal design parameters such as bottom gap and radius of coil are determined.

  • PDF

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.