• Title/Summary/Keyword: control vibration

Search Result 4,113, Processing Time 0.046 seconds

Vibration Analysis for BLDC Motor by Electromagnetic Exciting Force (전자기 가진력에 의한 BLDC 전동기의 진동 특성 해석)

  • Chung, H.J.;Shin, P.S.;Woo, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.118-120
    • /
    • 2007
  • This paper deals with the vibration analysis of characteristics for BLDC motor by electromagnetic exciting force. Vibration analysis of electric machine is mainly divided into mechanical and electrical approach. However, it need to execute coupling analysis of mechanical and electrical computation because the vibration sources have relation to each other. Magnetic fields is calculated from Maxwell stress method with electromagnetic finite element method. And magnetic radial force is calculated from previous magnetic fields. With coupled electromagnetic and structure finite element, the vibratory behavior between the phase commutation advancing technique and pulse-width control is investigated in single phase brushless dc motor.

  • PDF

A Study on the Noise Generation Cause and Vibration Damping Characteristics of Shock Absorber (쇼크 업소버의 소음 발생 요인과 진동감쇠 특성에 관한 연구)

  • 신귀수;김경모;박태원;이기형;정인성
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.102-112
    • /
    • 1998
  • Shock absorber has a great influence on the performance of the vehicle(ride comfort, manipulation, noise, vibration, turning, stability). Therefore, in this study we consider theoretically about general damper, variable damping oil damper, the control of vehicle Characteristics for the suspension, and undesirable phenomenon. And we measured the vibration/noise characteristics of shock absorber for the real car experimentation, strain change, and noise characteristics of shock absorber using experimental equipment. The study of domestic company and research institute on the vehicle shock absorber is active, but that of basis is not. So we think that they should be accomplished actively. Therefore, this paper will develop theoretical system on the vibration/noise characteristics of shock absorber by theoretical consideration and experimental result analysis of dynamic characteristics of shock absorber that were accomplished in this study. Then we will use it as the optimistic design data for shock absorber development.

  • PDF

Control Method of the Vibration Beat in a Korean bell (한국종의 진동 맥놀이 투닝법)

  • Kim, S.H.;Cui, C.X.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.359-360
    • /
    • 2009
  • In this study, we propose a practical method to improve the clarity and the period of the beat in a Korean bell. Proper beating in vibration and sound is very important feature in Korean bell. An equivalent ring theory is applied and finite element analysis is performed to determine the condition of the asymmetry of the bell. The clearity and the period of the beat are improved by attaching a counter mass or decreasing local thickness. This paper shows that the improved the attaching a counter mass or decreasing local thickness. This paper of the beat are improved by attaching a counter mass or decreasing local thickness. This paper shows that the amount and position of the local variation for the required beat condition can be predicted by using the equivalent model, The predicted results are verified by the experiment.

  • PDF

Development and application of impact vibration absorber (충격식 진동흡수기의 개발 및 응용에 관한 연구-제1보 자유질량체가 구형인 경우-)

  • 김동조
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.37-43
    • /
    • 1993
  • The simplest vibrtion absorber is the impact damper which consists of a small mass allowed to impact between two gaps sp that energy is dissipated by conversion into noise and heat. Impact damping is a passive vibration control technique to attenuate the vibrations of lightly damped. It has been investigated to reduce the excessive vibrations of turbin blades, radar antennas, machine tools and tall light poles. In this paper, the efficiency of impact vibration absorber was investigated. A steady state vibration of two equispaced impacts per cycle was assumed. The analysis based on the assumption has been considered and the theory is examined experimentally.

  • PDF

Vibration Analysis of Stiffened Thick Plate Subjected to Static Inplane Stress Using Finite Element Method (면내응력을 받는 보강 후판의 유한요소법에 의한 진동해석)

  • 오숙경;김일중;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.952-956
    • /
    • 2004
  • The soil-structure interactions are caused by the point sources of explosions, deriving piles, compaction of foundations and excavations those are frequently arose in the construction sites. Thus the analysis of soil-structure interactions is one of the most important subjects in the fields of dynamic analysis and vibration control. From this viewpoint, the aim of this study is to collect the basic data for designing foundation structures throughout understanding the dynamic structural behavior, which is embodied by the dynamic analysis of soil-structure systems. In this study, the dynamic analyses of stiffened thick plates subjected to in-plane stress on elastic foundations are carried out. The foundation is modeled as Pasternak foundation that includes the continuity effect of foundations. Also both the Mindlin plate theory and Timoshenko beam-column theory are used for analyzing the thick plates and beams, respectively.

  • PDF

Dynamic Analysis of a Stewart Platform Type of Machine Tool (스튜엇트 플랫폼형 공작기계의 동특성해석)

  • 장영배;장경진;백윤수;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.49-59
    • /
    • 1999
  • The mechanism of Stewart platform has many advantages for kinematic analysis and control. Thus there have been many research about employing this mechanism in the new type of machine tool. Since the vibration caused during the manufacturing process has a severely adverse effect on the machining precision. it is very important to enhance the vibrational characteristics. However. it is not easy to use finite element model for the vibration analysis. That is because the vibration behaviors of the structure vary in a complicated manner according as the length of links varies. In this paper, a Stewart platform type of machine tool is modeled in finite element method and then updated by using the experimental modal data. Finally. the static and dynamic characteristics of the finite element model are predicted and then discussed.

  • PDF

Response Property of Multi-directional Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • 안영공;신동춘;양보석;이일영;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.517-523
    • /
    • 2003
  • This paper presents response property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid) . The MR mount for the isolation of multi-directional vibrations was constructed in this study. Both the mechanism and shape of the mount are the same as squeeze film dampers for a rotor system. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents In this study.

A study on the design optimization of baseframe to avoid resonance of diesel generator set (발전기세트 공진 회피를 위한 베이스프레임 최적설계에 관한 연구)

  • Jeong, S.H.;Kwak, Y.S.;Kim, W.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.157-162
    • /
    • 2012
  • A structural modification of baseframe is an effective method to avoid resonance in marine diesel generator (D/G) set which consists of diesel engine, generator and baseframe. However the reinforcement with thick plates or additional parts to increase the natural frequency can be less effective because of increased weight. Especially fine control of target mode based on the experience is difficult because the weight and interference of system have to be considered. In this paper, the design optimization of baseframe was performed to reduce the resonant vibration using a gradient descent method. The design parameters such as thickness, shape and location of baseframe parts are optimized to increase the torsional natural frequency of D/G set. From the actual test, the new designed baseframe reduced the vibration level in resonance by 55% without any increase of weight and interference. interference.

  • PDF

Control of the Residual Vibration of Crane Using Equivalent Input Shaper (등가입력성형기를 이용한 크레인의 잔류진동 제어)

  • Park, Un-Hwan;Lee, Jae-Won;Noh, Sang-Hyun;Yoon, Ji-Sup;Park, Byung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.135-142
    • /
    • 2002
  • Input shaping is a method for reducing residual vibration in computer controlled machines. Vibration is eliminated by convolving a sequence of impulses, an input shaper, with a desired system command to produce a shaped input. This paper shows the shape of sensitivity curve of input shaper as impulse interval T and analysis of robustness for input shaper on the z-plane. And a method is presented for designing equivalent input shaper considering sampling time $T_s$. And then we applied equivalent input shaper to crane system.

Vibration control of lamp posts in Seohae Bridge using TMD (TMD를 이용한 서해대교 가로등의 진동제어)

  • 박찬민;박종칠;황성호;김용길;권오병
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.252-256
    • /
    • 2003
  • Tuned Mass Damper(TMD) has been applied in various fields in order to mitigate these vibrations. The shape or configuration of TMDs being unrestricted, a large panel of designs is possible to improve their effectiveness and economical-efficiency, where ingenuity plays an essential role and is required. This study presents an application of a new-type TMD on lamp posts to reduce vibrations induced by loads with large frequency domains such as wind loads. It is shown that the proposed TMD absorbs efficiently the energy without being restricted by frequency contents of the vibration.

  • PDF