• Title/Summary/Keyword: control vibration

Search Result 4,113, Processing Time 0.029 seconds

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

Defect Identification through Frequency Analysis of Vibration -In Case of Rotary Machine_ (진동의 주파수분석을 통한 결함 식별 - 회전기계를 중심으로-)

  • Jeong, Yoon-Seong;Wang, Gi-Nam;Kim, Gwang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.82-90
    • /
    • 1995
  • This paper pressents a condition-based maintenance (CBM) method through bibration analysis. The well known frequency analysis is employed for performing machine fault diagnosis. The statistical control chart is also applied for analyzing the trend of the bearing wear. Vibration sensors are attached to prototype machine and signals are continuously monitored. The sampled data are utilized to evaluate how well the fast fourier transform(FFT) and the statistical control chart techniques could be used to identify defects of machine and to analyze the machine degradation. Experimental results show that the propowed approach could classify every mal-function and could be utilized for real machine diagnosis system.

  • PDF

Design of an Energy Harvesting Circuit Using Solar and Vibration Energy with MPPT Control (MPPT 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • This paper describes an energy harvesting circuit using solar and vibration energy with MPPT(Maximum Power Point Tracking) control for micro sensor nodes. The designed circuit employs MPPT control to harvest maximum power available from a PZT vibration element and an integrated solar cell. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relationship between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed energy harvesting circuit and integrated solar cell occupy $2.85mm^2$ and $8mm^2$ respectively.

Critical-speed Increase of Optical Disk by Applying Residual Stresses (잔류응력 부과에 의한 광디스크의 임계속도 증가)

  • Kim, Nam Woong;Na, Sang Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2092-2099
    • /
    • 2013
  • Through the data transfer race in industry since 1990s, the operational speed of optical disk drive(ODD) becomes commonly over 10,000 rpm. Such high speed operation inevitably causes the vibration, which is also the disturbances in the read-write process of pick-up servo-controller. Generally the vibration disturbance problem can be solved by the vibration isolation using the rubber mount and the increase of robustness of the pick-up servo-controller. Optical disk itself has not been targeted for the vibration reduction, because it is manufactured under the standardized format. In this paper we focused on the increase of critical speed of optical disk, that is, the improvement of dynamic characteristics, with the control of residual stresses which are come from the injection molding process. To do this, first, the residual stresses induced from the injection molding process are calculated using finite element method. The major design parameters of the process conditions are flow rate and melt temperature, which control the residual stresses in optical disk. Second, the critical speed of optical disk is calculated with modal analysis considering residual stress distributions. It was found out that the critical speed can be improved by the control of operational parameters in the injection molding process.

A Control of Vibrator Using PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형 전동기(TFLM)를 이용한 가진기 제어)

  • 임태윤;강도현;김종무;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • This paper has realized a control system of a vibrator using PM excited Transverse Flux Linear Motor(TFLM). Proposed vibrator can supply a vibration force up to 700[N] at rated current, wide operation range of vibration displacement and high frequency for a tested structure. Also, volume of a vibrator system can be decreased because of a high trust force rato(a thrust force per weight=N/Kg). A proposed vibrator instead of a hydraulic vibrator can improve efficiency and have may advantages of maintenance and management. A desired value command is a vibration frequency and displacement in a controller for a vibrator system and a controlled values we a instant position and velocity of a mover Output value of the controller is phase current controlled by PWM converter. In this research, Dynamic simulation has been executed for analysis of a control algorithm and dvnauuc characteristics and is compared with experimental result.

Effects of Passive Vibration Convergence Sling Exercise on the Balance and Gait of Patients with Stroke (수동진동을 융합한 슬링운동이 뇌졸중환자의 균형과 보행에 미치는 영향)

  • Jang, Hyun-Jin;Park, Chi-Bok;Kim, Byeong-Geun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2020
  • The purpose of this study was to investigate the effects of sling exercise convergence with passive vibration on balance and gait in stroke patients. One time 35 minutes three times a week for six weeks. The sling exercise experimental group and the control group were divided into eight members. Balance and gait were measured. There was a significant difference between the eyes open standing and the eyes closed standing in the comparison between the experimental group and the control group. The experimental and control groups showed significant differences in the groups of eyes open standing and eyes closed standing, limits of stability and gait speed before and after intervention. Vibration sling exercise may help to improve the balance and gait of stroke patients. In the future, many patients, various frequencies, and effective exercise periods are needed.

Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures (건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발)

  • Jeong, Sang-Seop;Jang, Seok-Myeong;Lee, Seong-Ho;Yun, In-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

Structural Design of Vibration Controlled Tall Building with Overhang Structure

  • Ishibashi, Yoji;Yoshizawa, Katsuhito;Ogawa, Ichiro;Tamari, Masatoshi;Nagayama, Kenji;Oki, Hatsuka
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2019
  • This paper describes the structural design of a 212 m tall building currently under construction in the Tokiwabashi District Redevelopment Project facing Tokyo Station. In this project there was a requirement to rationally solve many issues arising from the conditions of the redevelopment project. In particular, the following two points were considered to be important from the point of view of structural design. 1) To provide an overhang frame with the perimeter columns on the lower stories inclined, in order to enable a typical floor area that greatly exceeded the limitations of the underground structure shape. 2) To provide high grade seismic performance for the office buildings to be constructed on prime city center land. LSCVCS (Lower Stories Concentrated Vibration Control System) was proposed as the method of rationally designing the overhang frame, which is an extremely disadvantageous element in the structural scheme of the tall building with a large slenderness ratio. LSCVCS is a system to provide effective damping by arranging vibration control devices in a concentrated manner in a lower story with large story height, that produces large deformation in an earthquake. Also, the vibration control devices arranged in the lower story are limited to viscous devices, to take into consideration the residual deformation of the overhang frame after an earthquake. The results of investigations into the specific effects of the system for the seismic design are reported, including Performance-based seismic design.

A Study on the Disk Vibration Control by Disk Damper For 100kTPI Hard Disk Drive Design (100KTPI급 HDD 구현을 위한 DISK DAMPER에 관한 연구)

  • Han, Y.S.;Kang, S.W.;Oh, D.H.;Hwang, T.Y.;Tran, Greg
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.363-368
    • /
    • 2002
  • A practical implementation method of squeeze-film aeroelastic disk vibration damping and its practical design performance are presented to provide a solution method to meet the tight TMR(Track Mis-Registration) design budget of high-TPI HDDs. Most previous research results are mainly based on the component-level study in the 'open-cover state' which is far from the realistic operation HDD condition. In this study, the squeeze-film disk damping effect is widely investigated under the realistic drive-level condition of 'enclosed-cover state.' It is found that the proper aeroelastic gap(s) between disk(s) and adjacent surface(s) to give significant vibration reduction in the enclosed HDD operating conditions can be achieved not only by classical well-known squeeze-film damping gaps such as very small 0.0x-millimeter level gaps which are not practically implementable in mass-production HDDs, but also by a few 0.x millimeter which is possible for designing realistic HDD design. The various experimental results including drive-level PES are also presented to prove feasibility of the optimal disk damper design for 93kTPI HDDs.

  • PDF

A study on reduction of structural vibration of an intake manifold system (흡기다기관 시스템의 구조진동 저감에 대한 연구)

  • 윤성호;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF