• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.031 seconds

Design of an Electromagnet with Low Detent Force and its Control for a Maglev Super-speed Vehicle

  • Lim, Jaewon;Kim, C.H.;Han, J.B.;Han, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1667-1673
    • /
    • 2015
  • The vibration and noise caused by the dynamic interaction between electromagnetic suspension and the linear synchronous motor stator beneath a flexible guideway remain problems in designing attractive Maglev trains. One possible method to reduce the sources of vibration is to minimize the detent force in the linear synchronous motor that creates variations in both lift force and thrust. This paper proposes lowering detent force by using separated core instead of single united core. The magnet is designed to adapt to the deflected guideway at a speed of 550km/h. This study will analyze the electromagnetic field and control performance, and how they relate to lift forces and dynamic responses.

A Study on the Experimental Dynamic Identification of Cylindrical Oil Dampers in the Wide Frequency Range (넓은 주파수 범위에서의 실린더형 유체 댐퍼에 대한 실험적 동특성 규명 연구)

  • Moon, S.J.;Kim, H.S.;Chung, T.Y.;Lee, D.H.;Hwang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.528-536
    • /
    • 2010
  • System identification for cylindrical oil dampers is carried out based on a series of dynamic experimental tests and theoretical approach for the analysis of the experimental data. Experimental tests are conducted using a specific hydraulic actuator in the wide frequency range from 10 Hz to 90 Hz. From this study, it is confirmed that control force of the damper is composed of inertia, damping and restoring components. In general, both restoring and damping components are significant and comparable. However, the portion of the inertia components becomes more significant than to be negligible in the high frequency range.

Performance Evaluation of a Pivot-Type Displacement Amplification Damper System for Seismic Strengthening (내진보강을 위한 피봇형 변위 증폭 감쇠 시스템의 성능 평가)

  • Park, Jang-Ho;Ahn, Sung-Chan;Park, Kwan-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • For the vibration control of earthquake-excited structures, a pivot-type displacement amplification damper system is proposed and its validity is investigated in this study. A rotational frame amplifies the stroke of the proposed damper system and it can absorb more vibrational energy compared to the conventional dampers of which strokes are not large. In order to prove the effectiveness of the system, time-history analyses are performed with a three story building modelled by a three dimensional frame and numerical results are compared with those for a conventional V-shape braced damper system. In addition, the seismic performances are investigated according to the changes of damper capacity and location.

Modal Radiation Efficiency of Swaged Panels

  • Lee, Jong-Hwa;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.132-139
    • /
    • 2002
  • Swaging technique is frequently used to stiffen thin panels for reducing the vibration levels of the machine or vehicle structure. Because the internal constraints imposed by swages can distort the mode shapes of panels, they affect the sound radiation characteristics. In this paper, the radiated sound field generated by the idealized and baffled finite swaged panel is studied, in which the curved swage section is modeled as an incomplete cylindrical shell. The modal radiation efficiencies are predicted using the transfer matrix concept and compared with those of flat panels. It is observed that the radiation efficiencies of the swaged vibrational modes can increase slightly for frequencies below the critical frequency, while increase of radiation efficiency depends on the mode shapes and other related structural parameters.

Semi-Active Control of Wind-Induced Vibration of Tall Building Using Magneto-Rheological Dampers (자기유변유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.72-77
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 ASCE benchmark 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩 내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다, 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유상한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 제어 시스템임을 확인할 수 있었다.

  • PDF

Analysis of bubble cavitation and control of cavitation noise of hydrofoils (기포 캐비테이션의 거동 해석 및 수중익 캐비테이션의 소음 제어)

  • 강관형;안종우;송인행;김기섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.335-341
    • /
    • 2001
  • The bubble cavitation and cloud cavitation are the major sources of cavitation-induced sound and vibration. A numerical method which predicts the trajectory and volume change of a cavity is developed, to predict the cavitation noise of a body. It is shown, by using the numerical method, that the cavitation inception and events rate is strongly dependent on the screening effect caused by the pressure gradient around a body, which is confirmed experimentally. Additionally, the effectiveness of a cavitation control method utilizing air injection is investigated experimentally. It is demonstrated that the noise level of the cloud cavitation can be significantly reduced by the air-injection method.

  • PDF

Introduction and application of three sound visualization systems (3가지 음장가시화 시스템의 소개와 적용 예)

  • 김양한;남경욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1197-1202
    • /
    • 2001
  • Near-field acoustic holography is a powerful tool to visualize sound sources. This method requires pressure measurement at many points for a good hologram. Thus one has to measure carefully so that errors due to the uncertainty of position, sensor mismatch, and so on are reduced. A method to solve this problem is to use a well-designed measurement system. This paper introduces a sound visualization system at center for noise and vibration control (NOVIC), KAIST, and addresses the advantages in terms of the error reduction. The system consists of array microphones, array jigs, a system to control the position and the velocity of the jigs, a data acquisition system, and a monitoring system. This paper also shows some sound visualization results when the system is applied to a speaker and a computer. The results verifies that the sound visualization system is useful for identifying sound sources.

  • PDF

Suppression of Sound Radiation from Composite Plate Structures Using Piezoelectric Materials (압전재료를 이용한 복합재료 평판 구조물의 음향파워 억제)

  • 윤기원;김승조
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.781-790
    • /
    • 1996
  • The goal of current research is to suppress the acoustic noise radiated from vibration of composite plate structure. The induced noise can be reduced through the control of the corresponding structural vibration modes by using the piezoelectric materials as actuator. The acoustic fields are to be analyzed through the boundary element method (BEM) based on the Rayleigh intergral equation and structural system through the finite element method (FEM). The suppression of rediated sound is studied by adaping the piezoelectric material as the distributed actuator. Numerical results are presented on the sound radiation from composite plate of arbitrary boundary conditions, the noise reduction adapting the piezoelectric materials as distributed actuator. The results show the effectiveness and possibility of piezoelectric actuator in the control of sound radiation from composite structure.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges

  • Farhangdoust, Saman;Eghbali, Pejman;Younesian, Davood
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.313-320
    • /
    • 2020
  • The usage of conventional tuned mass damper (TMD) was proved as an effective method for passive mitigating vortex-induced vibration (VIV) of a bridge deck. Although a variety of linear TMD systems have been so far utilized for vibration control of suspension bridges, a sensitive TMD mechanism to wind spectrum frequency is lacking. Here, we introduce a bistable tuned mass damper (BTMD) mechanism which has an exceptional sensitivity to a broadband input of vortex shedding velocity for suppressing VIV in suspension bridge deck. By use of the Monte Carlo simulation, performance of the nonlinear BTMD is shown to be more efficient than the conventional linear TMD under two different wind load excitations of harmonic (sinusoidal) and broadband input of vortex shedding. Consequently, an appropriate algorithm is proposed to optimize the design parameters of the nonlinear BTMD for Kap Shui Mun Bridge, and then the BTMD system is localized for the interior deck of the suspension bridge.