• Title/Summary/Keyword: control vibration

Search Result 4,111, Processing Time 0.031 seconds

Vibration Control of Offshore Platform using Tuned Mass Damper (동조질량감쇠기를 이용한 해양구조물의 진동제어)

  • Kim, Ju Myung;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.73-79
    • /
    • 2004
  • Tuned Mass Damper (TMD) was applied to control the vibration of an offshore structure due to ocean waves. The errors caused by the linearization of the fluid-structure interaction effect and the phenomena when using the linearized equation of motion in TMD design were analyzed. To determine the performance of TMD in controlling vibration, both regular waves with varying periods and irregular waves with different significant wave heights were used. When the offshore structure received regular waves with a period similar to the first natural period of structure. TMD performed well in terms of response reduction. Such was not the case for the other periods. however, In the case of irregular waves, TMD triggered the reduction of structural response for waves with relatively small significant wave height. For irregular waves with relatively big significant wave height, however, TMD did not show any control effect. Therefore, TMD is useful in reducing offshore structural vibration due to ambient waves, thereby helping secure fatigue life.

Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support (안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향)

  • Yu, Mi;Eun, Hey-In;Kim, Dong-Wook;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

Vibration Characteristics Evaluation According to Natural Periods of Structures and Location of a Sky-bridge (구조물의 고유진동주기 및 스카이브릿지 설치위치에 따른 진동특성평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3068-3073
    • /
    • 2013
  • Recently, studies of vibration control performance improvement of tall buildings connected by a sky-bridge have been conducted. In this study, the effect of difference of natural vibration periods of two buildings and install location of a sky-bridge on vibration control performance has been investigated. To this end, 40-story and 50-story building structures were selected as example structures. Analytical models were developed by varying the natural period difference ratio from 1.0 to 1.5. Artificial earthquake load based on KBC2009 was used as an excitation for time history analyses. Based on numerical simulation results, it has been shown that control performance for displacement and velocity of tall buildings connected by a sky-bridge is improved as the difference of natural periods of two buildings increases and the linked story becomes higher. However, in the case of acceleration response, it shows a counter trend compared to displacement and velocity responses.

Vibration Reduction Technique for Rotating Suspension Vehicles with a Modified Skyhook Controller (수정된 스카이훅 제어기를 적용한 회전형 현가장치 차량의 차체진동 저감)

  • Jung, Samuel;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In military vehicles moving over poor roads, severe vibration of the chassis can damage internal components. Currently, many studies have focused on active and semi-active suspensions to reduce the vibration of the chassis. In this study, a vibration reduction technique is suggested by applying a unique rotating suspension structure. SH-ADD, a type of modified Skyhook, was selected as a controller for vibration reduction. A random ISO class E road was selected as the driving road. The simulation was performed using ADAMS Control and Matlab Simulink. The control result was compared with the RMS acceleration with a focus on the cumulative fatigue of the internal equipment.

Active Control of Clamped Beams Using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.101-109
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the $2^{nd}$, $3^{rd}$ and $4^{th}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

  • PDF

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

Correlation Analysis of TPA Output Variables in a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트 시스템의 TPA 출력변수간의 상관관계 분석)

  • Park, Hyeol-Woo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • A PAEM(Pneumatic Active Engine Mount) system has been developed to improve NVH performance of a SUV in idle state. Control objective to attenuate the vibration of a vehicle should be determined prior to the design of control algorithm. This study presents the correlation analysis of output variables of PAEM system by means of TPA(Transfer Path Analysis) using experimental data obtained by vehicle test. The analysis results show that the vibration of vertical direction is more serious than those of longitudinal and lateral direction of the vehicle, and that the correlation between the vibration of front seat rail and that of steer wheel is highest. In conclusion, the vibrations of front seat rail and steer wheel in vertical direction should be considered as the control objectives of the PAEM.

Position Control of Inspection Robot with Unknown Boom Vibration Using Fuzzy Controller (미지의 붐 진동을 위한 퍼지 제어기를 사용한 탐사 로봇의 위치 제어)

  • Lee, Seung-Chul;Han, Byung-Jo;Park, Ki-Kwang;Jang, Gi-Ho;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.464-465
    • /
    • 2008
  • This paper proposed a robust controller in order to handle the boom vibration of inspection robot. While a inspection robot moves on boom with vibration by weight occurs. Therefore, Boom as structure like cantilever beam appears vibration by weight of inspection robot. The Z axis of inspection robot operates with Sliding structure. inspection robot is used "Fuzzy Controller" for position control with Z axis. The developed robot system is composed of the specially designed car for inspection robot. The proposed Fuzzy Controllers are used to track position reference signal of Z axis. A Experiment verify that the proposed Fuzzy Controller design method can achieve favorable control performance with regard to external disturbance.

  • PDF