• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.026 seconds

Design of Predictive Controller for Effective Superheat Control of Variable Speed Refrigeration System (가변속냉동시스템의 효율적인 과열도제어를 위한 예측제어기 설계)

  • Choi, Jeong-Pil;Hua, Li;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.9-15
    • /
    • 2008
  • In this paper, we suggest PI control with a predictive controller to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. The refrigeration system has long dead time in superheat inherently. The dead time makes the system difficult to achieve the satisfactory quick control response, especially superheat control response. In order to solve this problem, we designed a predictive controller based on PI control to progress superheat control performance. The control performance was investigated through some experiments to verify the effectiveness of the predictive controller.

  • PDF

The Legal Problems and Improvement in the Performance Based Design of Fire-fighting (성능위주소방설계의 법적문제 및 개선방안)

  • Yi, Jong-Yeong;Baek, Ok-Sun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • The buildings relevant to the law should be designed performance-based necessarily according to "Fire-Fighting System Installation Business Act" amended, January 1. 2009. Performance based design means that building design reflects structure, size, purpose, and building capacity to achieve the most effective design of fire-fighting system. Performance based design has meaning to buildings that it is insufficient to control fire-fighting by previous law-oriented design or inappropriate by uniform design, because of buildings becoming bigger and higher. However, it is difficult to implement the system actually, because laws relevant to fire-fighting prescribe only the object and the required qualifications of performance based design, but they don't have rules to enforce performance based design for specific parts. This study suggests improvements for a desirable implementation of performance based design in legal aspects, by analyzing the current legal regulations related to performance based design.

Design of Flight Control System for KARI Unmanned Airship (50m급 중고도 무인 비행선의 자동비행시스템 설계)

  • 김성필;주광혁;안이기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The flight control system designed for an unmanned airship, which is under development by KARI, is in reduced. First, the dynamic characteristics of the airship are addressed, which are fairly different from those of the nominal aircraft. In order to implement autonomous flight for the unmanned airship, flight control logic is designed including autopilot and guidance law. The autopilot is designed under consideration of the velocity region of the unmanned airship. The guidance laws are implemented in main operational modes such as point navigation, station keeping and spiral up/down for emergency return. Their simulation results are also presented in order to validate performances of the flight control system.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Look-Angle-Control Guidance for Missiles with Strapdown Seeker (스트랩다운 탐색기를 탑재한 유도탄의 관측각 제어 유도)

  • Kim, Dowan;Park, Woosung;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.275-280
    • /
    • 2013
  • Conventional proportional navigation guidance law is not adequate for missiles with a strapdown seeker, because the strapdown seeker cannot measure line-of-sight rate directly. This paper suggests a guidance loop design method, in which the look angle, measured by the strapdown seeker directly, is controlled to deliver a missile to a target. Basically, the look angle control loop is regarded as an attitude control loop. By using the proposed method, it is possible to shape the midcourse trajectory by choosing the reference look angle properly. The look angle control loop can robustly maintain target lock-on against disturbances because the target is always captured in the field of view of the seeker. The performance of the proposed method is verified via 6-DOF simulations of a true short range tactical missile model.

Model Following Reconfigurable Flight Control System Design Using Direct Adaptive Scheme (직접 적응기법을 이용한 모델추종 재형상 비행제어시스템 설계)

  • 김기석;이금진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • A new reconfigurable model following flight control method based on direct adaptive scheme is presented. Using the timescale separation principle, both the inner-loop and the outer-loop states are controlled simultaneously. For the timescale separation assumption to be satisfied, the inner-loop model dynamics is set to be fast whereas the outer-loop model dynamics is set to be relatively slow. The stability and convergence of the proposed control law is proved by Lyapunov theorem. One of the merits of the proposed reconfigurable controller is that the FDI process and the persistent input excitation are not necessary, which is suitable for the flight control system. To evaluate the reconfiguration performance of the proposed control method, numerical simulation is performed using six degree-of-freedom nonlinear dynamics.

Design and Application of the Semi-Continuous Sliding Mode Control(Control of Electromagnetic Suspension Systems) (반-연속 슬라이딩 모드 제어기의 설계 및 적용(자기부상 시스템의 제어))

  • Lee, Kyu-Joon;Kim, Sang-Hwan;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.38-46
    • /
    • 2002
  • A new semi-continuous sliding mode control is proposed for electromagnetic suspension systems. The control input is derived from the reaching law and the Lyapunov stability criteria, which is composed of continuous terms and low switching term. It has a low switching gain and chattering fee characteristics. It is shown by the computer simulation that the proposed control has good tracking performance and robustness compared with the classical sliding mode control.

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.