• Title/Summary/Keyword: control law design

Search Result 632, Processing Time 0.025 seconds

A study on the design of the optimal nonlinear controller for single state feedback (단일상태 feedback을 가지는 계의 최적 비선형제어기 설계에 관한 연구)

  • 노용균;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.206-209
    • /
    • 1988
  • For feedback control of a linear dynamic system the optimum linear slace regulator (OLSR) can be implemented only if all state are available for feedback. This work demonstrates that when only the output state is available for feedback, a nonlinear controllers can be improved performance over that obtained by a proportional controller. This paper found the optimal control law by well-known dynamic programming and principles of optimality. Thus, performance of both proportional and nonlinear controllers is compared with performance of optimum linear state regulator.

  • PDF

Digital PID controller design adopting the delta transforms ($\delta$ 변환을 채택한 디지틀 PID 제어기 설계)

  • 김인중;홍석민;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.981-986
    • /
    • 1992
  • In order to implement the digital PID control algorithm, it is necessary to consider the effect of the finite word length(FWL). In this paper, we show the FWL effect in the digital PID controllers. The conception analyse the effects of the signal quantization error in the digital PID algorithm and the coefficient wordlength determined from performance criteria with the statistical wordlength concept. Throughout this paper, it is dealt with the type of controller structure based delta operator the delta operator has such advantages are superior rounfoff noise perfoff noise performance, more accurate coefficient repersentation, and less sensitive control law.

  • PDF

Guidance and Control System Design for the Descent Phase of a Vertical Landing Vehicle

  • Hoshino, Katsutoshi;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.47-52
    • /
    • 1998
  • This study deals with guidance and control laws for an optimal reentry trajectory of a vertical landing reusable launch vehicle (RLV) in the future. First, a guidance law is designed to create the reference trajectory which minimizes propellant consumption. Then, a nonlinear feedback controller based on a linear quadratic regulator is designed to make the vehicle follow the predetermined reference trajectory, The proposed method is simulated for the first stage of the H-II scale rocket.

  • PDF

A Study on Longitudinal Control Law in order to Improvement of T-50 Fine Tracking Performance (T-50 정밀추적 성능 향상을 위한 세로축 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Koh, Gi-Oak;Bae, Myung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.50-55
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The laws of flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements. Particularly, the design of longitudinal control laws for utilizing RSS methods greatly affects the performance of the aircraft in Air-to-Air Tracking and Air-to-Ground modes, which improves weapon delivery. In the area of Air-to-Air Tracking, the development of longitudinal control laws aids in the fine tracking and gross acquisition of other aircraft. This paper proposes that new concept of longitudinal control law introduce in order to improve fine tracking performance in air-to-air tracking maneuver. Result of HQS pilot simulation and flight test, fine tracking performance improve without degradation of gross acquisition when new concept of control law is applied.

ENHANCED FUZZY SLIDING MODE CONTROLLER FOR LAUNCH CONTROL OF AMT VEHICLE USING A BRUSHLESS DC MOTOR DRIVE

  • Zhao, Y.S.;Chen, L.P.;Zhang, Y.Q.;Yang, J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.383-394
    • /
    • 2007
  • Due to the clutch's non-linear dynamics, time-delays, external disturbance and parameter uncertainty, the automated clutch is difficult to control precisely during the launch process or automatic mechanical transmission (AMT) vehicles. In this paper, an enhanced fuzzy sliding mode controller (EFSMC) is proposed to control the automated clutch. The sliding and global stability conditions are formulated and analyzed in terms of the Lyapunov full quadratic form. The chattering phenomenon is handled by using a saturation function to replace the pure sign function and fuzzy logic adaptation system in the control law. To meet the real-time requirement of the automated clutch, the region-wise linear technology s adopted to reduce the fuzzy rules of the EFSMC. The simulation results have shown hat the proposed controller can achieve a higher performance with minimum reaching time and smooth control actions. In addition, our data also show that the controller is effective and robust to the parametric variation and external disturbance.

Feedback control of intelligent structures with uncertainties and its robustness analysis

  • Cao, Zongjie;Wen, Bangchun;Kuang, Zhenbang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.327-340
    • /
    • 2003
  • Variations in system parameters due to uncertainties of parameters may result in system performance deterioration and create system internal stability problems. Uncertainties in structural modeling of structures are often considered to ensure that the control system is robust with respect to response errors. So the uncertain concept plays an important role in the analysis and design of the engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is studied and a new method for analyzing the robustness of systems with the uncertainties is presented. Firstly, the system with uncertain parameters is considered as the perturbation of the system with deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties are discussed when the feedback control law is applied to the original system and perturbed system. Combining the convex model of uncertainties with the finite element method, the analysis theory of the robustness of intelligent structures with the uncertainties can be developed. The description and computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a numerical example of the application of the present method is given to show the validity of the method.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test (비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kim Seung-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.

Design of terminal guidance algorithm for underwater vehicles using LQ technique (LQ기법을 이용한 수중 운동체의 마지막(terminal) 유도 알고리즘 설계)

  • 김삼수;이갑래;이재명;전완수;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.620-628
    • /
    • 1991
  • For a Stationary moving-target. the design technique of guidance system for underwater vehicle with a seeker of st type is developed. Using perturbation theory, a new method which linearizes the nonlinear intercept geometry is proposed. On the basis of the linearized system modeling, LQ and PID design technique is used to determine the structure and gain of the guidance system. Some simulation results applied underwater engagement are represented to show that the proposed guidance law is superior to the other guidance laws as pursuit, Bang-Beng, PN APN.

  • PDF

A Study on Control Law Augmentation in order to Improve Aircraft Controllability and Stability in High Angle of Attack (고받음각에서 조종성능 및 안정성 증강을 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Dong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.60-67
    • /
    • 2005
  • Modern version of supersonic jet fighter aircraft must have guaranteed appropriate controllability and stability in HAoA(high angle of attack). Limit value of aircraft entering into the deep stall in HAoA is related to aircraft configuration design. But, In order to guarantee the aircraft's safety in HAoA, control law for HAoA region implemented in digital Fly-By-Wire flight control system of supersonic jet fighter. The AoA limiter is designed for positive HAoA in longitudinal control law. But, aircraft departure during aggressive negative pitch maneuver such as push over in departure resistance flight test. Therefore negative AoA limiter is needed in longitudinal control law. Result of T-50 flight test show that the AoA is exceed the limit value during aggressive positive pitch maneuver in pull up of power approach mode. In this paper, the AoA limit control law in positive and negative AoA was proposed in order to improve aircraft controllability and stability.