• Title/Summary/Keyword: control frames

Search Result 490, Processing Time 0.024 seconds

Fast Sequential Probability Ratio Test Method to Obtain Consistent Results in Speaker Verification (화자확인에서 일정한 결과를 얻기 위한 빠른 순시 확률비 테스트 방법)

  • Kim, Eun-Young;Seo, Chang-Woo;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • A new version of sequential probability ratio test (SPRT) which has been investigated in utterance-length control is proposed to obtain uniform response results in speaker verification (SV). Although SPRTs can obtain fast responses in SV tests, differences in the performance may occur depending on the compositions of consonants and vowels in the sentences used. In this paper, a fast sequential probability ratio test (FSPRT) method that shows consistent performances at all times regardless of the compositions of vocalized sentences for SV will be proposed. In generating frames, the FSPRT will first conduct SV test processes with only generated frames without any overlapping and if the results do not satisfy discrimination criteria, the FSPRT will sequentially use frames applied with overlapping. With the progress of processes as such, the test will not be affected by the compositions of sentences for SV and thus fast response outcomes and even consistent performances can be obtained. Experimental results show that the FSPRT has better performance to the SPRT method while requiring less complexity with equal error rates (EER).

  • PDF

Evaluating the performance of OBS-C-O in steel frames under monotonic load

  • Bazzaz, Mohammad;Andalib, Zahra;Kafi, Mohammad Ali;Kheyroddin, Ali
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.699-712
    • /
    • 2015
  • Bracing structures with off-centre bracing system is one of the new resistant systems that frequently used in the frame with pin connections. High ductility, high-energy dissipation and decrease of base shear are advantages of this bracing system. However, beside these advantages, reconstruction and hard repair of off-centre bracing system cause inappropriate performance in the earthquake. Therefore, in this paper, the goal is investigating the behavior of this type of bracing system with ductile element (circular dissipater), in order to providing replacement of damaged member without needing repair or reconstruction of the general system. To achieve this purpose, some numerical studies have been performed using ANSYS software, a frame with off-centre bracing system and optimum eccentricity (OBS-C-O) and another frame with the same identifications without ductile element (OBS) has been created. In order to investigate precisely on the optimum placement of circular elements under monotonic load again three steal frames were modeled. Furthermore, the behavior of this general system investigated for the first time, linear and nonlinear behavior of these two steel frames compared to each other, to achieve the benefit of using the circular element in an off-centre bracing system. Eventually, the analytical results revealed that the performance of steel ring at the end of off-centre braces system illustrating as a first defensive line and buckling fuse in the off-centre bracing system.

Seismic retrofit of steel buildings using external resistant RC walls and friction dampers

  • Mostoufi-Afshar, Pouya;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.823-837
    • /
    • 2020
  • In this research, the idea of improving the seismic response of an existing steel structure with use of friction dampers between external walls and the structure is discussed. The main difference of this method with other methods of seismic rehabilitation is that interior spaces of the existing structure remain untouched and new parts including external walls and dampers are added outside of the structure. Three frames having 3, 6 and 9 stories are modeled in SAP2000 software before and after seismic retrofit and responses of the system are investigated under the effect of seven earthquake records. Initially, different ratios of seismic weight of stories are presumed for slip forces of the dampers with a distribution based on given equations. The optimized capacity of dampers is obtained by investigating the average of maximum displacement, acceleration and base shear of the structure caused by earthquakes. For this optimized values, maximum inter-story drifts and acceleration are obtained through numerical models. Results show that in 3, 6 and 9-story frames peak roof displacement decreased up to 80%. Maximum roof acceleration and base shear of the frames also decreased 46, 40 and 32% and 84, 67 and 65%, respectively for three building structures.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure (플랜트 설비 지지용 대안 강구조 시스템의 내진성능)

  • Kwak, Byeong Hun;Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

System Design for Developing the Remote Controlled Sprayer of Pear Trees (배나무 무인 방제기의 개발을 위한 살포 시스템 설계)

  • Lee, Bong Ki;Min, Byeong Ro;Lee, Min Young;Hwa, Yoon Il;Choi, Dong Sung;Hong, Jun Taek;Lee, Dae Weon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.303-308
    • /
    • 2013
  • A remote controlled sprayer has designed, manufactured and experimented to spray well on pear trees with pesticides. This study was executed to automate pest management of pear trees. Types of spray nozzle, which was used on the system, were analyzed experimentally to find an optimal spray equipment configuration with several nozzles. Attributions of ultrasonic sensors were analyzed to adjust spraying distance of an unmanned sprayer system. This paper investigated shapes of pear trees and cultivating environment of pear orchard. In order to select optimal spray environment, liquid distribution was measured while angle of nozzle was changed. Additionally, liquid distribution by distance and sprayed liquid capacity by side distance were measured. According to information of shapes of pear trees and cultivating environment of pear orchard, sprayer frames of an unmanned sprayer system were manufactured and sprayer frames were suitable for interval of pear trees. The sprayer system could adjust width of sprayer frames to 2.5 m and height of sprayer frames to 1.7 m. Optimal angle of nozzle, and optimal distance between objects and nozzle were $15^{\circ}$ and 0.8 m. When side distance was placed from 1.2 m to 1.8 m, sprayed capacity reached to the highest amount.

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

A Single-Phase Hybrid Active Filter for AC Electrified Railway Systems (교류전기철도 급전시스템의 전기품질 향상을 위한 단상 하이브리드 능동필터)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Generally, the AC electrified railway systems have the power quality problems that are induced from the harmonic currents and the reactive power. This paper presents a single-phase hybrid active filter adopting a SRF(synchronous-reference-frame) control for improving power quality in the AC electrified railway systems. The single-phase hybrid active filter can compensate the harmonic currents and the reactive power through the proposed SRF control algorithm. The proposed control algorithm can extract the third and fifth harmonics through the MSRF(multiple-synchronous-reference-frames) which is used to apply the three-phase systems. Therefore, the hybrid active filter can compensates only the high-frequency harmonic currents whereas the passive filter compensates the low-frequency harmonic currents. Also, the proposed SRF control algorithm can compensate the reactive power by the closed-loop control. The Validity and the effectiveness of the proposed SRF control method for the hybrid active filter are illustrated through the simulation results.

Control Frame Design for Improvement Transmit Efficiency in the Wireless Networks (무선 네트워크에서 전송효율증대를 위한 제어프레임 설계)

  • Han, Jae-Kyun;Pyeon, Seok-Beom
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • IEEE 802.11 wireless network supports control frames like RTS/CTS(Request To Send / Clear To Send). Because they is defend to frame collection problems. It helps to solve the frame collection problem but decreases the throughput rate. Also, control frame makes False Node Problem. This problem is makes to other wireless nodes don't work and don't find channels in the same cell and near cells. We proposed a reformed new control frame for efficiency throughput rate and solution of False Node Problem. New control frame is to have added to 4 bytes of channel detection ability at the RTS frames. Channel detection ability supported to check channel at the wireless node start to transmit data frame, We expect that channel detection ability make prevent False Node Problem for increase to access number to channel. We perform comparative analysis in terms of delay(sec) and load(bits/sec) with reform RTS/CTS method which proves the efficiency of the proposed method.

Optimal QP Determination Method for Adaptive Intra Frame Encoding (적응적 인트라 프레임 압축을 위한 최적 QP 결정 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1009-1018
    • /
    • 2015
  • In video coding, the first frame of a GOP is encoded in intra mode which generates a larger number of bits. In addition, the first frame is used for the inter mode encoding of the following frames. Thus the intial QP for the first frame encoding affects the first frame as well as the following frames. To determine the initial QP that maximizes the PSNR of a GOP, several algorithms which uses the ratio of the PSNR of the I frame and the PSNR of P frames of a GOP have been proposed. In this paper, we propose a new traffic model that can be used to determine the optimal initial QP simply and exactly in algorithms that use the PSNR ratio. We first analyze the characteristics of the PSNR ratio of I and P frames and the PSNR of a GOP, and then propose a new traffic model which can represent the characteristics and determine the optimal intial QP. It is shown by experimental results that the initial QP determination method with the proposed model can predict an optimal initial QP whose difference from the optimal value is less than 2. The proposed scheme can also generate the PSNR performance better than that of the existing JVT algorithm.