• Title/Summary/Keyword: control frames

Search Result 490, Processing Time 0.025 seconds

Motion Analysis with Time Delay Neural Network (시간 지연 신경망을 이용한 동작 분석)

  • Jang, Dong-Sik;Lee, Man-Hee;Lee, Jong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-426
    • /
    • 1999
  • A novel motion analysis system is presented in this paper. The proposed system is inspired by processing functions observed in the fly visual system, which detects changes in input light intensities, determines motion on both the local and the wide-field levels. The system has several differences from conventional motion analysis system. First, conventional systems usually focused on matching similar feature or optical flow, but neural network is applied in this system. Back propagation is used by learning method, and Tine Delay Neural Network (TDNN) is also used as analysis method. Second, while conventional systems usually limited on only two frames of sequence, the proposed system accept multiple frames of sequence. The experimental results showed a 94.7% correct rate with a speed of 71.47 milli seconds for real and synthetic images.

  • PDF

Modified 802.11-Based Opportunistic Spectrum Access in Cognitive Radio Networks

  • Zhai, Linbo;Zhang, Xiaomin
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.276-279
    • /
    • 2012
  • In this letter, a modified 802.11-based opportunistic spectrum access is proposed for single-channel cognitive radio networks where primary users operate on a slot-by-slot basis. In our opportunistic spectrum access, control frames are used to reduce the slot-boundary impact and achieve channel reservation to improve throughput of secondary users. An absorbing Markov chain model is used to analyze the throughput of secondary users. Simulation results show that the analysis accurately predicts the saturation throughput.

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

Analysis of the congestion control scheme with the discard eligibility bit for frame relay networks (프레임 릴레이망에서의 DE 비트를 사용하는 혼잡제어 방식의 성능해석에 관한 연구)

  • 이현우;우상철;윤종호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2027-2034
    • /
    • 1997
  • Frame relay is a fast packet switching technology that performs relaying and multiplexing frames with variable lengths over a wide area link at the T1 or E1 speed, by elminating error and flow control in the network. In frame relay networks, congestion control is typically performed through the rate enforcement with a discard eligibility (DE) bit, and the explicit negative feedback meachanisms using explicit congetion notification bits. In this paper, we consider the congestiong control scheme using the rate enforcement mechanism with DE bit for frame relay network. Assuming that each frame with exponentially distributed length arrives according to the Poission fashion, we can treat the frame relay switch as an M/M/1/K priority queueing system with pushout basis. We analyze and present the blocking probabilities and waiting time distributions of frames.

  • PDF

Distortion Variation Minimization in low-bit-rate Video Communication

  • Park, Sang-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.54-58
    • /
    • 2007
  • A real-time frame-layer rate control algorithm with a token bucket traffic shaper is proposed for distortion variation minimization. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. The proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better visual and PSNR performances than the existing rate control method.

Auto Setup Method of Best Expression Transfer Path at the Space of Facial Expressions (얼굴 표정공간에서 최적의 표정전이경로 자동 설정 방법)

  • Kim, Sung-Ho
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents a facial animation and expression control method that enables the animator to select any facial frames from the facial expression space, whose expression transfer paths the system can setup automatically. Our system creates the facial expression space from approximately 2500 captured facial frames. To create the facial expression space, we get distance between pairs of feature points on the face and visualize the space of expressions in 2D space by using the Multidimensional scaling(MDS). To setup most suitable expression transfer paths, we classify the facial expression space into four field on the basis of any facial expression state. And the system determine the state of expression in the shortest distance from every field, then the system transfer from the state of any expression to the nearest state of expression among thats. To complete setup, our system continue transfer by find second, third, or fourth near state of expression until finish. If the animator selects any key frames from facial expression space, our system setup expression transfer paths automatically. We let animators use the system to create example animations or to control facial expression, and evaluate the system based on the results.

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

Adaptive Initial QP Determination Algorithm for Low Bit Rate Video Coding (저전송률 비디오 압축에서 적응적 초기 QP 결정 알고리즘)

  • Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1957-1964
    • /
    • 2010
  • In Video coding, the first frame is encoded in intra mode which generates a larger number of bits. In addition, the first frame is used for the inter mode encoding of the following frames. Thus the intial QP for the first frame of GOP affects the first frame as well as the following frames. Traditionally, the initial QP of a GOP is determined by the initial QP of the previous GOP and the average QP of the inter mode frames. In case of JM, the initial QP of a GOP is adjusted as the initial QP being less than the average QP of inter mode frames by two. However, this method is not suitable for the low bit rate video coding. In this paper, the linear relationship between the optimal QP and the ratio of the PSNR of the first frame and the average PSNR of the inter mode frames is first investigated and the linear model is proposed based on the results of the investigation. The proposed model calculate the optimal initial QP using the encoding results of the previous GOP. It is shown by experimental results that the new algorithm can predict the optimal initial QP more accurately and generate the PSNR performance better than that of the existing JM algorithm.

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.