• Title/Summary/Keyword: control criterion

Search Result 769, Processing Time 0.028 seconds

Robust control for external input perturbation using second order derivative of universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.111-114
    • /
    • 1996
  • This paper proposes a robust control method using Universal Learning Network(U.L.N.) and second order derivatives of U.L.N.. Robust control considered here is defined as follows. Even if external input (equal to reference input in this paper) to the system at control stage changes awfully from that at learning stage, the system can be controlled so as to maintain a good performance. In order to realize such a robust control, a new term concerning the perturbation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivative of the criterion function with respect to the parameters.

  • PDF

PI controller design by stability criterion and Genetic algorithm (안정도 판별법과 유전자 알고리즘에 의한 PI 제어기 설계)

  • Cho, Joon-Ho;Choi, Jung-Nae;Lee, Won-Hyok;Hwang, Hyung-Soo;Park, Min-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2230-2232
    • /
    • 2003
  • One of the important problems in a control system design is the requirement that the system should have adequate relative stability. In this paper, We proposed a tuning algorithm PI controller for first order plus dead time system. It is determined the domain of the PI control parameters by Routh - Hurwitz criterion, and we tune parameters of the PI controller using genetic algorithm. A numerical example is also given to illustrate the method.

  • PDF

A study of a image segmentation by the normalized cut (Normalized cut을 이용한 Image segmentation에 대한 연구)

  • Lee, Kyu-Han;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2243-2245
    • /
    • 1998
  • In this paper, we treat image segmentation as a graph partitioning problem. and use the normalized cut for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different graphs as well as the total similarity within the groups. The minimization of this criterion can formulated as a generalized eigenvalues problem. We have applied this approach to segment static image. This criterion can be shown to be computed efficiently by a generalized eigenvalues problem

  • PDF

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - The Difference by the Presence of Radiant Heat as a Criterion Factor - (슬래브축열의 최적제어방책에 관한 연구 -평가요소로 복사열의 고려 유무에 의한 차이-)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.287-296
    • /
    • 2006
  • In this paper, optimal control strategy of the air-conditioning system with slab thermal storage was investigated based on the optimal control theory. An optimal heat output to the plenum chamber and the air-conditioned room was determined based on two kinds of criterion functions. The first one requires small deviation in room air temperature from a set-point value and low energy consumption. It is shown that the optimized control is to store heat through the whole storage time and to increase storage rate gradually with time. As the second case, a criterion that both a deviation of operative temperature from a set-point temperature and the energy consumption should be minimized was adopted. The room air temperature was a little high and the cooling load during storage time was reduced, compared with the results when a criterion function considering only the room air temperature is used.

Robust Position Control for PMLSM Using Friction Parameter Observer and Adaptive Recurrent Fuzzy Neural Network (마찰변수 관측기와 적응순환형 퍼지신경망을 이용한 PMLSM의 강인한 위치제어)

  • Han, Seong-Ik;Rye, Dae-Yeon;Kim, Sae-Han;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2010
  • A recurrent adaptive model-free intelligent control with a friction estimation law is proposed to enhance the positioning performance of the mover in PMLSM system. For the PMLSM with nonlinear friction and uncertainty, an adaptive recurrent fuzzy neural network(ARFNN) and compensated control law in $H_{\infty}$ performance criterion are designed to mimic a perfect control law and compensate the approximated error between ideal controller and ARFNN. Combined with friction observer to estimate nonlinear friction parameters of the LuGre model, on-line adaptive laws of the controller and observer are derived based on the Lyapunov stability criterion. To analyze the effectiveness our control scheme, some simulations for the PMLSM with nonlinear friction and uncertainty were executed.

Robust control by universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro;Murata, Junichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.123-126
    • /
    • 1995
  • Characteristics of control system design using Universal Learning Network (U.L.N.) are that a system to be controlled and a controller are both constructed by U.L.N. and that the controller is best tuned through learning. U.L.N has the same generalization ability as N.N.. So the controller constructed by U.L.N. is able to control the system in a favorable way under the condition different from the condition of the control system in learning stage. But stability can not be realized sufficiently. In this paper, we propose a robust control method using U.L.N. and second order derivatives of U.L.N.. The proposed method can realize better performance and robustness than the commonly used Neural Network. Robust control considered here is defined as follows. Even though initial values of node outputs change from those in learning, the control system is able to reduce its influence to other node outputs and can control the system in a preferable way as in the case of no variation. In order to realize such robust control, a new term concerning the variation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivatives of criterion function with respect to the parameters. Finally it is shown that the controller constricted by the proposed method works in an effective way through a simulation study of a nonlinear crane system.

  • PDF

D$^*$Model Matching Control System for Four Wheel Steering

  • Asara, Naoki;Osa, Yasuhiro;Uchikado, Shigeru;Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.670-674
    • /
    • 2005
  • $D^*$ criterion is defined as a reference of the handling quality and ride comfortableness for lateral-directional automobile motion. However it is generally difficult to obtain the satisfied handling quality and ride comfortableness based on $D^*$ criterion by conventional two wheel steering system. In this study, a design method of model matching control system is proposed to obtain the satisfied $D^*$ response of 4 Wheel Steering.

  • PDF

Effects of hip joint strengthening on muscle strength, Y-balance and low extremity injury criterion in athletics (엉덩관절 강화 운동이 운동선수의 근력, 동적자세조절 및 하체 손상 준거에 미치는 영향)

  • Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1345-1353
    • /
    • 2021
  • The purpose of this study was to investigate the effects of 6 weeks hip joint strengthen on muscle strength, dynamic posture control and low extremity injury criterion. Twenty athletics were divided into two groups, the exercise group was conducted for three times a week, 60 minutes, and six weeks. The dependent variables of this study were flexibility, muscular strength, dynamic posture control, and lower body injury criterion. The results of this study showed that the flexibility was not significant, but muscle strength was significant difference. The dynamic posture control was significantly effective in the left posterolateral and posteromedial. In addition, total score was significantly exercise effect, and there was no difference between left and right leg length. In conclusion, hip joint strengthen increased muscle strength and dynamic posture control, and decreased the concern of low extremity injury criterion.

Absolutely Stable Region for Missile Guidance Loop (유도탄 유도루프의 절대안정한 시간영역)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, the stable region for missile guidance loop employing an integrated proportional navigation guidance law is derived. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. By applying the circle criterion to the system, a bound for the time of flight up to which stability can be assured is established as functions of flight time. Less conservative results, as compared to the result by Popov criterion, are obtained.