• 제목/요약/키워드: control algorithm for the adjustment process

검색결과 26건 처리시간 0.026초

전자제품생산의 조정고정을 위한 지능형 제어알고리즘 (Intelligent Control Algorithm for the Adjustment Process During Electronics Production)

  • 장석호;구영모;고택범;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.448-457
    • /
    • 1998
  • A neural network based control algorithm with fuzzy compensation is proposed for the automated adjustment in the production of electronic end-products. The process of adjustment is to tune the variable devices in order to examine the specified performances of the products ready prior to packing. Camcorder is considered as a target product. The required test and adjustment system is developed. The adjustment system consists of a NNC(neural network controller), a sub-NNC, and an auxiliary algorithm utilizing the fuzzy logic. The neural network is trained by means of errors between the outputs of the real system and the network, as well as on the errors between the changing rate of the outputs. Control algorithm is derived to speed up the learning dynamics and to avoid the local minima at higher energy level, and is able to converge to the global minimum at lower energy level. Many unexpected problems in the application of the real system are resolved by the auxiliary algorithms. As the adjustments of multiple items are related to each other, but the significant effect of performance by any specific item is not observed. The experimental result shows that the proposed method performs very effectively and are advantageous in simple architecture, extracting easily the training data without expertise, adapting to the unstable system that the input-output properties of each products are slightly different, with a wide application to other similar adjustment processes.

  • PDF

전자제품 생산의 조정공정을 위한 신경회로망 응용 (An Application of Neural Ntwork For the Adjustment Process during Electronics Production)

  • 장석호;정영기;감도영;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.310-313
    • /
    • 1996
  • In this paper, a neural control algorithm is proposed on the automation of adjustment process. The adjustment processes in camcoder production line are modelled, and the processes are adjusted automatically by means of off-line supervisory trained multi-layer neural network. We have made many experiments on the several adjustment processes by using the control algorithm. There are many unexpected troubles to achieve the desirable adjust time in the practical application. To overcome those, some auxiliary algorithms are demanded. As a result, our proposed algorithm has some advantages - simple architecture, easy extraction of the training data without expertises, adaptability to the varying systems, and wide application for the other resemble processes.

  • PDF

이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 이수영;이석한;홍예선
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.

Geometric charts with bootstrap-based control limits using the Bayes estimator

  • Kim, Minji;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.65-77
    • /
    • 2020
  • Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that the in-control average run length has a value greater than the desired one. The out-of-control performance of geometric charts with adjusted limits is also discussed.

볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계 (The neural network controller design with fuzzy-neuraon and its application to a ball and beam)

  • 신권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

ITC 자동조정을 위한 제어기법에 관한 연구 (A study on the control strategy for automatic adjustment of ITC(Integrated Tube Components))

  • 김성락;이종운;변증남;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.935-938
    • /
    • 1991
  • We are developing an automatic adjusting system for ITC. ITC(Integrated Tube Components) has a large set-by-set variability in its characteristics. And it also has nonlinearities. It requires not only a fast vision process but also an efficient control algorithm to meet the need for high productivity. In this paper, the description of an adjusting system and the modelling of ITC will be presented. And also the concept of a new rule based hierarchical algorithmic approaches will be suggested.

  • PDF

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어 (System identification and admittance model-based nanodynamic control of ultra-precision cutting process)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF