• Title/Summary/Keyword: control Lyapunov function

Search Result 374, Processing Time 0.025 seconds

Fuzzy Modeling Technique of Nonlinear Dynamic System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • 소명옥;류길수;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

Sliding Mode Control based on Recurrent Neural Network (회귀신경망을 이용한 슬라이딩 모드 제어)

  • 홍경수;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.135-139
    • /
    • 2000
  • This research proposes a nonlinear sliding mode control. The sliding mode control is designed according to Lyapunov function. The equivalent control term is estimated by neural network. To estimate the unknown part in the control law in on-line fashion, A recurrent neural network is given as on-line estimator. The stability of the control system is guaranteed owing to the on-line learning ability of the recurrent neural network. It is certificated through simulation results to be applied to nonlinear system that the function approximation and the proposed control scheme is very effective.

  • PDF

Advances in Nonlinear Predictive Control: A Survey on Stability and Optimality

  • Kwon, Wook-Hyun;Han, Soo-Hee;Ahn, Choon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Some recent advances in stability and optimality for the nonlinear receding horizon control (NRHC) or the nonlinear model predictive control (NMPC) are assessed. The NRHCs with terminal conditions are surveyed in terms of a terminal state equality constraint, a terminal cost, and a terminal constraint set. Other NRHCs without terminal conditions are surveyed in terms of a control Lyapunov function (CLF) and cost monotonicity. Additional approaches such as output feedback, fuzzy, and neural network are introduced. This paper excludes the results for linear receding horizon controls and concentrates only on the analytical results of NRHCs, not including applications of NRHCs. Stability and optimality are focused on rather than robustness.

Nonlinear Pitch and Torque Controller Design for Wind Turbine Generator Using Lyapunov Function (리아프노프 함수를 이용한 풍력 발전기 비선형 피치 및 토크 제어기 설계)

  • Kim, Guk-Sun;No, Tae-Soo;Jeon, Gyeong-Eon;Kim, Ji-Yon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1147-1154
    • /
    • 2012
  • In this study, a method for designing blade pitch and generator torque controllers for a wind turbine generator is presented. This method consists of two steps. First, the Lyapunov stability theory is used to obtain nonlinear control laws that can regulate the rotor speed and the power output at all operating ranges. The blade pitch controller is chosen such that it always decreases a positive definite function that represents the error in rotor speed control. Similarly, the generator torque controller always decreases a positive definite function that reflects the error in power output control. Then, the simulation-based optimization technique is used to tune the design parameters. The controller design procedure and simulation results are presented using the widely adopted two-mass model of the wind turbine.

Optimal Control of Stochastic Bilinear Systems (확률적 이선형시스템의 최적제)

  • Hwang, Chun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.7
    • /
    • pp.18-24
    • /
    • 1982
  • We derived an optimal control of the Stochastic Bilinear Systems. For that we, firstly, formulated stochastic bilinear system and estimated its state when the system state is not directly observable. Optimal control problem of this system is reviewed on the line of three optimization techniques. An optimal control is derived using Hamilton-Jacobi-Bellman equation via dynamic programming method. It consists of combination of linear and quadratic form in the state. This negative feedback control, also, makes the system stable as far as value function is chosen to be a Lyapunov function. Several other properties of this control are discussed.

  • PDF

Elastic Demand Stochastic User Equilibrium Assignment Based on a Dynamic System (동적체계기반 확률적 사용자균형 통행배정모형)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • This paper presents an elastic demand stochastic user equilibrium traffic assignment that could not be easily tackled. The elastic demand coupled with a travel performance function is known to converge to a supply-demand equilibrium, where a stochastic user equilibrium (SUE) is obtained. SUE is the state in which all equivalent path costs are equal, and thus no user can reduce his perceived travel cost. The elastic demand SUE traffic assignment can be formulated based on a dynamic system, which is a means of describing how one state develops into another state over the course of time. Traditionally it has been used for control engineering, but it is also useful for transportation problems in that it can describe time-variant traffic movements. Through the Lyapunov Function Theorem, the author proves that the model has a stable solution and confirms it with a numerical example.

Lyapunov-based Fuzzy Queue Scheduling for Internet Routers

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.317-323
    • /
    • 2007
  • Quality of Service (QoS) in the Internet depends on queuing and sophisticated scheduling in routers. In this paper, we address the issue of managing traffic flows with different priorities. In our reference model, incoming packets are first classified based on their priority, placed into different queues with different capacities, and then multiplexed onto one router link. The fuzzy nature of the information on Internet traffic makes this problem particularly suited to fuzzy methodologies. We propose a new solution that employs a fuzzy inference system to dynamically and efficiently schedule these priority queues. The fuzzy rules are derived to minimize the selected Lyapunov function. Simulation experiments show that the proposed fuzzy scheduling algorithm outperforms the popular Weighted Round Robin (WRR) queue scheduling mechanism.

Nonlinear Control with Magnitude and Rate Constraints (크기 및 변화율 제한을 갖는 비선형 시스템의 제어)

  • Lee, Jung-Kook;Lee, Keum-Won;Lee, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.130-135
    • /
    • 2007
  • This paper deals with a controller design for a 2 dimensional aeroelatic model which has unknown parameters including polynomial type nonlinearity. Actually in case of state and acuator signal having magnitude, rate and bandwidth limitations, the controller can't be implemented and so in each case, a filter is used for implementation. First, error signals are defined upon the backstepping theory, and tracking error signals are also defined due to command signal and filter signals and then compensated tracking error signals are defined. Lastly, a Lyapunov function is defined for the stabilization and from this method, an adaptive law is derived. Simulations are done for the demonstrtion of the effectiveness of the algorithms.

  • PDF

Control of Nonlinear System with a Disturbance Using Multilayer Neural Networks

  • Seong, Hong-Seok
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-195
    • /
    • 2000
  • The mathematical solutions of the stability convergence are important problems in system control. In this paper such problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error, and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are updated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is as the weights of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.

  • PDF