• Title/Summary/Keyword: contractile reactivity

Search Result 10, Processing Time 0.023 seconds

Participation of COX-1 and COX-2 in the contractile effect of phenylephrine in prepubescent and old rats

  • Guevara-Balcazar, Gustavo;Ramirez-Sanchez, Israel;Mera-Jimenez, Elvia;Rubio-Gayosso, Ivan;Aguilar-Najera, Maria Eugenia;Castillo-Hernandez, Maria C.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • Vascular reactivity can be influenced by the vascular region, animal age, and pathologies present. Prostaglandins (produced by COX-1 and COX-2) play an important role in the contractile response to phenylephrine in the abdominal aorta of young rats. Although these COXs are found in many tissues, their distribution and role in vascular reactivity are not clear. At a vascular level, they take part in the homeostasis functions involved in many physiological and pathologic processes (e.g., arterial pressure and inflammatory processes). The aim of this study was to analyze changes in the contractile response to phenylephrine of thoracic/abdominal aorta and the coronary artery during aging in rats. Three groups of rats were formed and sacrificed at three distinct ages: prepubescent, young and old adult. The results suggest that there is a higher participation of prostanoids in the contractile effect of phenylephrine in pre-pubescent rats, and a lower participation of the same in old rats. Contrarily, there seems to be a higher participation of prostanoids in the contractile response of the coronary artery of older than pre-pubescent rats. Considering that the changes in the expression of COX-2 were similar for the three age groups and the two tissues tested, and that expression of COX-1 is apparently greater in older rats, COX-1 and COX-2 may lose functionality in relation to their corresponding receptors during aging in rats.

Responsiveness of the Thoracic Aorta in Rats Treated with Dehydroepiandrosterone (DHEA) (Dehydroepiandrosterone(DHEA)의 투여에 의한 rat 흉대동맥의 반응성 변화)

  • 박관하
    • Biomolecules & Therapeutics
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2001
  • In order to determine the role of dehydroepiandrosterone (DHEA), the important sex-steroid hormone precursor, in vascular reactivity in rats, animals were treated for two weeks with DHEA or sex hormones, and the vascorelaxant and contractile responses of isolated aorta were examined. DHEA diminished the acetylcholine (ACh)-induced relaxation in female rats, while the drug was without effect in males. Testoterone lowered the vasorelaxant activity to ACh in either sex. 17$\beta$-Estradiol enhanced ACh-induced vasorelaxation in male rats, but this female sex hormone did not influence in females. In male rats, the androgen receptor antagonist flutamide also enhanced vasorelaxant action of ACh. When the male rat aorta was incubated in vitro with a nitric oxide (NO) synthase inhibitor L-NAME, phenylephrine-induced contraction was greatly potentiated in DHEA-pretreated rats compared to control ones. The present results suggest that DHEA stimulates mainly androgen in female, but both androgen and estrogen in male rats. The participation of NO In the modulation of vascular reactivity with pretreated DHEA was also considered.

  • PDF

Effect of Heme Oxygenase Induction by NO Donor on the Aortic Contractility

  • Kim, Chang-Kyun;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Carbon monoxide (CO) binds to soluble guanylate cyclase to lead its activation and elicits smooth muscle relaxation. The vascular tissues have a high capacity to produce CO, since heme oxygenase-2 (HO-2) is constitutively expressed in endothelial and smooth muscle cells, and HO-1 can be greatly up-regulated by oxidative stress. Moreover, the substrate of HO, heme, is readily available for catalysis in vascular tissue. Although the activation of heme oxygenase pathway under various stress conditions may provide a defence mechanism in compromised tissues, the specific role of HO-1-derived CO in the control of aortic contractility still remains to be elucidated. The present study was done to determine the effect of HO-1 induction on the aortic contractility. Thus, the effects of incubation of aortic tissue with S-nitroso-N-acetylpenicillamine (SNAP) for 1 hr on the aortic contractile response to phenylephrine were studied. The preincubation with SNAP resulted in depression of the vasoconstrictor response to phenylephrine. This effect was restored by HO inhibitor or methylene blue but not by NOS inhibitor. The attenuation of vascular reactivity by preincubation with SNAP was also revealed in endothelium-free rings. $AlF4^--evoked$ contraction in control did not differ from that in SNP-treated group. These results suggest that increased production of CO was responsible for the reduction of the contractile response to phenylephrine in aortic ring preincubated with SNAP and this effect of SNAP was independent on endothelium.

  • PDF

Effect of Sunghyangchungisan on Contractile Reactivity and $Ca^{2+}$ metabolism in Isolated Rabbit Carotid Artery (성향정기산(星香正氣散)이 가토의 경동맥(頸動脈) 평활근(平滑筋) 긴장(緊張) 및 $Ca^{2+}$ 대사(代謝)에 미치는 영향(影響))

  • Kim, Young-Gyun;Kweon, Jung-Nam;Kim, Jong-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.377-388
    • /
    • 2000
  • Objective : This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone and $Ca^{2+}$ metabolism in arterial tissues. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities, endothelial function and $Ca^{2+}$ metabolism were determined. Methods : In phentobarbital sodium-anesthetized rabbits, SHCS administered through ear vein (100 mg/Kg body wt.) or intragastric dwelling tube (300 mg/Kg body wt.) attenuated phenylephrine (PE, 10 ${\mu}g$/Kg, i.v.)-induced increases in both systolic and diastolic cartoid arterial blood pressure. Results : In experiments with isolated arterial strips, SHCS relaxed arterial rings which were pre-contracted by phenylephrine (PE, 1 ${\mu}M$). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50)$ of PE oh its dose-response curve ruled out the possible interaction of SHCS with ${\alpha}$-receptors. The relaxant effect of SHCS was not affected by removal of endothelium or a nitric oxide synthase inhibitor, L-NAME. Methylene blue, an inhibitor of the soluble guanylate cyclase, did not affect the relaxant effect of SHCS. These results suggest that the action of SHCS is not mediated by the endothelium nor soluble guanylate cyclase. Constant cGMP production determined in arterial strips in the presence or absence of SHCS is consistent with this conclusion. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}$-free solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. SHCS partially blocked $Ca^{2+}$ influx stimulated by PE and high $K^+$ which was determined by 5-min ^{45}Ca$ uptake, while it did not affect $Ca^{2+}$ efflux. Conclusions : From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium independent manner, andinhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF

Aortic Remodelling in Chronic Nicotine-Administered Rat

  • Zainalabidin, Satirah;Budin, Siti Balkis;Ramalingam, Anand;Lim, Yi Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.411-418
    • /
    • 2014
  • Vascular remodelling is an adaptive mechanism, which counteracts pressure changes in blood circulation. Nicotine content in cigarette increases the risk of hypertension. The exact relationship between nicotine and vascular remodelling still remain unknown. Current study was aimed to determine the effect of clinically relevant dosage of nicotine (equivalent to light smoker) on aortic reactivity, oxidative stress markers and histomorphological changes. Twelve age-matched male Sprague-Dawley rats were randomly divided into two groups, i.e.: normal saline as control or 0.6 mg/kg nicotine for 28 days (i.p., n=6 per group). On day-29, the rats were sacrificed and the thoracic aorta was dissected immediately for further studies. Mean arterial pressure (MAP) and pulse pressure (PP) of nicotine-treated vs. control were significantly increased (p<0.05). Nicotine-treated group showed significant (p<0.05) increase tunica media thickness, and decrease in lumen diameter, suggesting vascular remodelling which lead to prior hypertension state. The phenylephrine (PE)-induced contractile response in nicotine group was significantly higher than control group ($ED_{50}=1.44{\times}10^5M$ vs. $4.9{\times}10^6M$) (p<0.05~0.001). However, nicotine-treated rat showed significantly lower endothelium-dependent relaxation response to acetylcholine (ACh) than in control group ($ED_{50}=6.17{\times}10^7M$ vs. $2.82{\times}10^7M$) (p<0.05), indicating loss of primary vascular function. Malondialdehyde (MDA), a lipid peroxidation marker was significantly higher in nicotine group. Superoxide dismutase (SOD) enzymatic activity and glutathione (GSH) were all reduced in nicotine group (p<0.05) vs. control, suggesting nicotine induces oxidative imbalance. In short, chronic nicotine administration impaired aortic reactivity, probably via redox imbalance and vascular remodelling mechanism.

Moderate and Deep Hypothermia Produces Hyporesposiveness to Phenylephrine in Isolated Rat Aorta

  • Cho, Jun Woo;Lee, Chul Ho;Jang, Jae Seok;Kwon, Oh Choon;Roh, Woon Seok;Kim, Jung Eun
    • Journal of Chest Surgery
    • /
    • v.46 no.6
    • /
    • pp.402-412
    • /
    • 2013
  • Background: Moderate and severe hypothermia with cardiopulmonary bypass during aortic surgery can cause some complications such as endothelial cell dysfunction or coagulation disorders. This study found out the difference of vascular reactivity by phenylephrine in moderate and severe hypothermia. Methods: Preserved aortic endothelium by excised rat thoracic aorta was sectioned, and then down the temperature rapidly to $25^{\circ}C$ by 15 minutes at $38^{\circ}C$ and then the vascular tension was measured. The vascular tension was also measured in rewarming at $25^{\circ}C$ for temperatures up to $38^{\circ}C$. To investigate the mechanism of the changes in vascular tension on hypothermia, NG-nitro-L-arginine methyl esther (L-NAME) and indomethacin administered 30 minutes before the phenylephrine administration. And to find out the hypothermic effect can persist after rewarming, endothelium intact vessel and endothelium denuded vessel exposed to hypothermia. The bradykinin dose-response curve was obtained for ascertainment whether endothelium-dependent hyperpolarization factor involves decreasing the phenylnephrine vascular reactivity on hypothermia. Results: Fifteen minutes of the moderate hypothermia blocked the maximum contractile response of phenylephrine about 95%. The vasorelaxation induced by hypothermia was significantly reduced with L-NAME and indomethacin administration together. There was a significant decreasing in phenylephrine susceptibility and maximum contractility after 2 hours rewarming from moderate and severe hypothermia in the endothelium intact vessel compared with contrast group. Conclusion: The vasoplegic syndrome after cardiac surgery might be caused by hypothermia when considering the vascular reactivity to phenylephrine was decreased in the endothelium-dependent mechanism.

Enhanced Expression of Inducible Nitric Oxide Synthase May Be Responsible for Altered Vascular Reactivity in Streptozotocin-induced Diabetic Rats

  • Jang, Jae-Kwon;Kang, Young-Jin;Seo, Han-Geuk;Seo, Sook-Jae;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • Growing evidence indicates that enhanced generation or actions of nitric oxide (NO) are implicated in the pathogenesis of hypertension in spontaneously hypertensive rats and diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. We investigated whether inducible nitric oxide synthase (iNOS) expression in STZ-induced diabetic rats is responsible for the alterations of vascular reactivity. Diabetic state was confirmed 28 days after injection of STZ (i.p) in rats by measuring blood glucose. In order to evaluate whether short term (4 weeks) diabetic state is related with altered vascular reactivity caused by iNOS expression, isometric tension experiments were performed. In addition, plasma nitrite/nitrate (NOx) levels and expression of iNOS in the lung and aorta of control and STZ-treated rats were compared by using Griess reagent and Western analysis, respectively. Results indicated that STZ-treated rats increased the maximal contractile response of the aorta to phenylephrine (PE), and high $K^+,$ while the sensitivity remained unaltered. Endothelium-dependent relaxation, but not SNP-mediated relaxation, was reduced in STZ-treated rats. Plasma nitrite/nitrates are significantly increased in STZ-treated rats compared to controls. The malondialdehyde (MDA) contents of liver, serum, and aorta of diabetic rats were also significantly increased. Furthermore, nitrotyrosine, a specific foot print of peroxynitrite, was significantly increased in endothelial cells and smooth muscle layers in STZ-induced diabetic aorta. Taken together, the present findings indicate that enhanced release of NO by iNOS along with increased lipid peroxidation in diabetic conditions may be responsible, at least in part, for the augmented contractility, possibly through the modification of endothelial integrity or ecNOS activity of endothelium in STZ-diabetic rat aorta.

  • PDF

The Change of Vascular Reactivity in Rat Thoracic Aorta 3 Days after Acute Myocardial Infarction (흰쥐에서 급성심근경색 3일 후 흉부 대동맥 혈관 반응성의 변화)

  • Lee, Sub;Roh, Woon-Seok;Jang, Jae-Seok;Bae, Chi-Hoon;Park, Ki-Sung;Lee, Jong-Tae
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.576-587
    • /
    • 2009
  • Background: The up-regulation of the nitric oxide (NO)-cGMP pathway might be involved in the change of vascular reactivity in rats 3 days after they suffer acute myocardial infarction. However, the underlying mechanism for this has not been clarified. Material and Method: Acute myocardial infarction (AMI) was induced by occluding the left anterior descending coronary artery (LAD) for 30 min (Group AMI), whereas the sham-operated control rats were treated similarly without LAD occlusion (Group SHAM), The concentration-response relationships for phenylephrine (PE), KCl, acetylcholine (Ach) and sodium nitroprusside (SNP) were determined in the endothelium intact E(+) and endothelium denuded E(-) thoracic aortic rings from the rats 3 days after AMI or a SHAM operation. The concentration-response relationships of PE in the E(+) rings from the AMI rats were compared with those relationships in the rings pretreated with nitric oxide synthase (NOS) inhibitor $N{\omega}$-nitro-L-arginine methyl ester (L-NAME) or the cyclooxygenase inhibitor indomethacin. The plasma nitrite/nitrate concentrations were checked via a Griess reaction. The cyclic GMP content in the thoracic aortic rings was measured by radioimmunoassay and the endothelial nitric oxide synthase (eNOS) mRNA expression was assessed by real time PCR. Result: The mean infarct size (%) in the rats with AMI was $21.3{\pm}0.62%$. The heart rate and the systolic and diastolic blood pressure were not significantly changed in the AMI rats. The sensitivity of the contractile response to PE and KCl was significantly decreased in both the E(+) and E(-) aortic rings of the AMI group (p<0.05). L-NAME completely reversed these contractile responses whereas indomethacin did not (p<0.05). Moreover, the sensitivity of the relaxation response to Ach was also significantly decreased in the AMI group (p<0.05). The plasma nitrite and nitrate content (p<0.05), the basal cGMP content (p<0.05) and the eNOS mRNA expression (p=0.056) in the AMI rats were increased as compared with the SHAM group. Conclusion: Our findings indicate that the increased eNOS activity and the up-regulation of the NO-cGMP pathway can be attributed to the decreased contractile or relaxation response in the rat thoracic aorta 3 days after AMI.

Effects of Sunghyangchungisan on contractile Reactivity of Isolated Rabbit Carotid Artery (성향정기산(星香正氣散)이 가토(家?)의 경동맥(頸動脈) 평활근(平滑筋) 긴장도(緊張度) 조절(調節)에 미치는 영향(影響))

  • Kim, Young-Kyun;Ko, Woo-Shin;Kim, Jong-Hoon
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.228-243
    • /
    • 1998
  • This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities were determined. SHCS relaxed the arterial rings which were pre-contracted by phenylephrine(PE). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50}$ of PE on its dose-response curve ruled out the possible interaction of SHCS and ${\alpha}-receptor$. The relaxant effect of SHCS was not affected by removal of endothelium, and pretreatment of the arterial rings with methylene blue or nitro-L-arginine. This results suggest that the action of SHCS is not mediated by endothelium nor soluble guanylate cyclase. SHCS relaxed high $K^{+}-induced$ contractions as well, whereas it failed to relax phorbol ester-induced contractions. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}-free$ solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium-independent manner, and inhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF

EFFECTS OF PANAX GINSENG SAPONINS ON CHEMICAL MEDIATOR RELEASE FROM AIRWAY SMOOTH MUSCLE IN ACTIVELY SENSITIZED GUINEA PIG

  • Ro Jai Youl;Yoon Suk Jong;Lee Jong Wha;Kim Kyung Hwan
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.84-93
    • /
    • 1993
  • It has been reported that ginseng is effective in the central nervous system, immune system, and the strong inflammatory responses. However, there has been no research report yet about the effect of ginseng on allergic hypersensitivity reactivity. To confirm the ginseng effects on the release of mediators(histamine. leukotrienes etc.) which cause the hypersensitivity reactivity and inflammatory response, we used actively sensitized guinea pig airway tissues by utilizing the superfusion technique. In this procedure. the contractile response and mediators released after antigen stimulation of sensitized tissues, and IgG and IgE antibody products were measured in sera of immunized animals. Then the results of the controll group were compared to those of ginseng pretreatment groups. In the total saponin(TS) and panaxatriol(PT) pretreatment, histamine release decreased by $20\%$ in the tracheal tissues after active sensitization by ovalbumin(OVA, 10mg/kg), but in the lung parenchyma, histamine release decreased by $40\%.$ Panaxadiol(PD) significantly decreased histamine release by $40\%$ in the both tissues after active sensitization. TS, PT and PD of ginseng poorly blocked leukotrienes (LTs) and prostagrandin $D_2(PGD_2)$ release(less than $10\%$). Ginseng TS and PT had no effect on the serum IgG antibody production by ovalbumin, whereas PD significantly increased serum IgG antibody contents(approximately by 2 times). However, $IgG_1$ antibody products in the serum of guinea pig actively sensitized with ovalbumin after PD pretreatment were decreased, compared to that with ovalbumin alone. IgE antibody production by passive cutaneous anaphylaxis(PCA) titer in the TS pretreatment increased 3 times more than in the absence of TS(PCA titer by PT was not detected). These studies show that some ginseng saponins can in part act to inhibit mediator release in antigen - induced airway smooth muscle by inducing the IgG antibody production which has been changed in the specificity.

  • PDF