• Title/Summary/Keyword: contour vector

Search Result 122, Processing Time 0.023 seconds

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

The Contour Extraction of Lung Parenchyma on the EBT Image Acquired with Spirometric Gating (호흡 연동에 의한 EBT 단면 영상에서의 폐실질 윤곽선 검출)

  • Kim, Myoung-Nam;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.154-162
    • /
    • 1999
  • In this paper, we acquired EBT section images of lung parenchyma using fabricated spirometric gating device and proposed new energy function based on dynamic contour model in order to extracted the contour of the lung parenchyma in EBT images. In EBT images, gray level of the lungs is lower than other region. we extracted the lungs contour using the new energy function considering gray level and contour vector of the lung parenchyma region from EBT images. As we compared the proposed method with the conventional method, we confirmed that detection method using proposed energy function was valid.

  • PDF

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour (서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할)

  • Park, Jae Heung;Se, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.101-109
    • /
    • 2012
  • In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

3D Face Recognition using Projection Vectors for the Area in Contour Lines (등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식)

  • 이영학;심재창;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.230-239
    • /
    • 2003
  • This paper presents face recognition algorithm using projection vector reflecting local feature for the area in contour lines. The outline shape of a face has many difficulties to distinguish people because human has similar face shape. For 3 dimensional(3D) face images include depth information, we can extract different face shapes from the nose tip using some depth values for a face image. In this thesis deals with 3D face image, because the extraction of contour lines from 2 dimensional face images is hard work. After finding nose tip, we extract two areas in the contour lilies from some depth values from 3D face image which is obtained by 3D laser scanner. And we propose a method of projection vector to localize the characteristics of image and reduce the number of index data in database. Euclidean distance is used to compare of similarity between two images. Proposed algorithm can be made recognition rate of 94.3% for face shapes using depth information.

  • PDF

Analyses of Computation Time on Snakes and Gradient Vector Flow

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.439-445
    • /
    • 2007
  • GVF can solve two difficulties with Snakes that are on setting initial contour and have a hard time processing into boundary concavities. But GVF takes much longer computation time than the existing Snakes because of their edge map and partial derivatives. Therefore this paper analyzed the computation time between GVF and Snakes. As a simulation result, both algorithms took almost similar computation time in simple image. In real images, GVF took about two times computation than Snakes.

  • PDF

An Automatic Extraction of Blood Flow Contour from Cardiac MRI (심장 MRI 영상에서 혈류 윤곽선의 자동 추출)

  • Lee, Hyeong-Jik;Jo, Sang-Hyeon;Choe, Heung-Mun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.5
    • /
    • pp.56-62
    • /
    • 2000
  • In this paper, an automatic extraction of the blood flow contour from cardiac MRI is proposed. By using the GVF snake which has wider capture range than the conventional snake, and by automatically generating the initial points along the outside of the contour of the zero GVF field in the edge image of the cardiac MRI, the blood flow contour can be automatically extracted, even when the contours have boundary concavities due to the papillary muscles, without any manual initialization of the experts. Experiments are conducted on the various real cardiac MRIs including noise and papillary muscles, and the proposed method is proved to be efficient in automatic extraction of the blood contours even if they have the boundary concavities.

  • PDF

Multiple Properties-Based Moving Object Detection Algorithm

  • Zhou, Changjian;Xing, Jinge;Liu, Haibo
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.124-135
    • /
    • 2021
  • Object detection is a fundamental yet challenging task in computer vision that plays an important role in object recognition, tracking, scene analysis and understanding. This paper aims to propose a multiproperty fusion algorithm for moving object detection. First, we build a scale-invariant feature transform (SIFT) vector field and analyze vectors in the SIFT vector field to divide vectors in the SIFT vector field into different classes. Second, the distance of each class is calculated by dispersion analysis. Next, the target and contour can be extracted, and then we segment the different images, reversal process and carry on morphological processing, the moving objects can be detected. The experimental results have good stability, accuracy and efficiency.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition (2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼)

  • 한수환;우영운
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared with the recognition process using one of the competitive neural algorithm, called a LVQ( Loaming Vector Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to the represent two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes with eight different shapes of aircraft images are presented to illustrate a relatively high performance of the proposed recognition system.

  • PDF

Lip Recognition Using Active Shape Model and Shape-Based Weighted Vector (능동적 형태 모델과 가중치 벡터를 이용한 입술 인식)

  • 장경식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.75-85
    • /
    • 2002
  • In this paper, we propose an efficient method for recognizing lip. Lip is localized by using the shape of lip and the pixel values around lip contour. The shape of lip is represented by a statistically based active shape model which learns typical lip shape from a training set. Because this model is affected by the initial position, we use a boundary between upper and lower lip as initial position for searching lip. The boundary is localized by using a weighted vector based on lip's shape. The experiments have been performed for many images, and show very encouraging result.

  • PDF