• Title/Summary/Keyword: contour extraction

Search Result 256, Processing Time 0.025 seconds

Recognition of Car License Plate using Kohonen Algorithm

  • Lim, Eun-Kyoung;Yang, Hwang-Kyu;Kwang Baek kim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.785-788
    • /
    • 2000
  • The recognition system of a car plate is largely classified as the extraction and recognition of number plate. In this paper, we extract the number plate domain by using a thresholding method as a preprocess step. The computation of the density in a given mask provides a clue of a candidate domain whose density ratio corresponds to the properties of the number plate obtained in the best condition. The contour of the number plate for the recognition of the texts of number plate is extracted by operating Kohonen Algorithm in a localized region. The algorithm reduces noises around the contour. The recognition system with the density computation and Kohonen Algorithm shows a high performance in the real system in connection with a car number plate.

  • PDF

The Extraction of Exact Building Contours in Aerial Images (항공 영상에서의 인공지물의 정확한 경계 추출)

  • 최성한;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.47-64
    • /
    • 1995
  • In this paper, an algorithm that finds man-made structures in a praylevel aerial images is proposed to perform stereo matching. An extracted contour of buildings must have a high accuracy in order to get a good feature-based stereo matching result. Therefore this study focuses on the use of edge following in the original image rather than use of ordinary edge filters. The Algorithm is composed of two main categories; one is to find candidate regions in the whole image and the other is to extract exact contours of each building which each candidate region.. The region growing method using the centroid linkage method of variance value is used to find candidate regions of building and the contour line tracing algorithm based on an adge following method is used to extract exact contours. The result shows that the almost contours of building composed of line segments are extracted.

Car Identification Using Comparing Car Size (크기 비교를 통한 차량 식별)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.488-489
    • /
    • 2019
  • We propose a method to identify vehicle type by the formula of distance between feature points of vehicle and proportional rate of size. Car images are converted from the basic RGB model to the gray color model. Perform Canny Edge Direction to remove the background image of the car. The desired feature points are obtained through contour extraction.

  • PDF

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

A Study on Face Contour Line Extraction using Adaptive Skin Color (적응적 스킨 칼라를 이용한 얼굴 경계선 추출에 관한 연구)

  • Yu, Young-Jung;Park, Seong-Ho;Moon, Sang-Ho;Choi, Yeon-Jun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2017
  • In image processing, image segmentation has been studied by various methods in a long time. Image segmentation is the process of partitioning a digital image into multiple objects and face detection is a typical image segmentation field being used in a variety of applications that identifies human faces in digital images. In this paper, we propose a method for extracting the contours of faces included in images. Using the Viola-Jones algorithm, to do this, we detect the approximate locations of faces from images. But, the Viola-Jones algorithm could detected the approximate location of face not the correct position. In order to extract a more accurate face region from image, we use skin color in this paper. In details, face region would be extracted using the analysis of horizontal and vertical histograms on the skin area. Finally, the face contour is extracted using snake algorithm for the extracted face area. In this paperr, a modified snake energy function is proposed for face contour extraction based snake algorithm proposed by Williams et al.[7]

3D Face Recognition using Projection Vectors for the Area in Contour Lines (등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식)

  • 이영학;심재창;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.230-239
    • /
    • 2003
  • This paper presents face recognition algorithm using projection vector reflecting local feature for the area in contour lines. The outline shape of a face has many difficulties to distinguish people because human has similar face shape. For 3 dimensional(3D) face images include depth information, we can extract different face shapes from the nose tip using some depth values for a face image. In this thesis deals with 3D face image, because the extraction of contour lines from 2 dimensional face images is hard work. After finding nose tip, we extract two areas in the contour lilies from some depth values from 3D face image which is obtained by 3D laser scanner. And we propose a method of projection vector to localize the characteristics of image and reduce the number of index data in database. Euclidean distance is used to compare of similarity between two images. Proposed algorithm can be made recognition rate of 94.3% for face shapes using depth information.

  • PDF

Extraction and Complement of Hexagonal Borders in Corneal Endothelial Cell Images (각막 내피 세포 영상내 육각형 경계의 검출과 보완법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.102-112
    • /
    • 2013
  • In this paper, two step processing method of contour extraction and complement which contain hexagonal shape for low contrast and noisy images is proposed. This method is based on the combination of Laplacian-Gaussian filter and an idea of filters which are dependent on the shape. At the first step, an algorithm which has six masks as its extractors to extract the hexagonal edges especially in the corners is used. Here, two tricorn filters are used to detect the tricorn joints of hexagons and other four masks are used to enhance the line segments of hexagonal edges. As a natural image, a corneal endothelial cell image which usually has regular hexagonal form is selected. The edge extraction of hexagonal shapes in corneal endothelial cell is important for clinical diagnosis. The proposed algorithm and other conventional methods are applied to noisy hexagonal images to evaluate each efficiency. As a result, this proposed algorithm shows a robustness against noises and better detection ability in the aspects of the output signal to noise ratio, the edge coincidence ratio and the extraction accuracy factor as compared with other conventional methods. At the second step, the lacking part of the thinned image by an energy minimum algorithm is complemented, and then the area and distribution of cells which give necessary information for medical diagnosis are computed.

Motion Segmentation based on Modified Hierarchical Block-based Motion Estimation and Contour Extraction (블록 기반 움직임 추정과 윤곽선 추출을 통한 움직임 분할)

  • 장정진;김태용;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.333-336
    • /
    • 2001
  • 본 논문에서는 영상 시퀀스 상에서 물체의 가려짐을 고려하여 상대적인 깊이 순서에 의해 정렬되는 계층을 분리하기 위한 새로운 움직임 분할 방법을 제안한다. 블록을 기반으로 한 움직임 추정 및 클러스터링 과정을 통하여 각 계층에 대한 블록영역을 구하고, 이 블록영역에 대하여 윤곽선 추출을 이용하여 각 계층에 대한 정확한 객체를 분리할 수 있다. 이러한 움직임 분할방법을 통한 동영상의 계층적인 표현은 영상에서 원하지 않는 물체, 전경, 배경의 제거나 기존의 영상을 이용한 새로운 영상의 합성에 이용될 수 있으며, 분할을 통해 얻어진 객체는 영상 압축, 영상 합성 등을 위한 데이터베이스에 저장되어 응용될 수 있다.

  • PDF

Boundary extraction about endocardial and epicardial of myocardial SPECT short-axis images using snakes (스네이크를 이용한 심근 SPECT short-axis 영상의 내외벽에 대한 경계선 추출)

  • 김령주;김영철;손병환;이병일;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.111-114
    • /
    • 2001
  • 게이트 심근 SPECT 영상은 좌심실 구혈률(EF), 확장기말 부피(end-diastolic volume), 수축기말(end-systolic volume)부피 등의 지표로 심근의 기능을 평가하는데 널리 이용된다. 이러한 지표들을 구하기 위해서는 심근 안팎의 경계선을 추출해야 한다. 본 연구는 좌심실의 SPECT short-axis 영상에서 전처리 과정을 거친 영상을 Hough Transform을 이용하여 초기점 설정한 후 심실 내외벽의 경계선을 추출하기 위해 Williams 가 제안한 Active Contour Model(snakes)을 이용하여 심근의 경계선을 자동으로 추출하였다.

  • PDF

Extraction of Face and Components Using Color, Contour, and Structural Information of Face (얼굴의 색상, 윤곽선, 구조적 정보를 이용한 얼굴 및 구성요소 추출)

  • 선영범;김진태
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.142-145
    • /
    • 2001
  • 본 논문에서는 얼굴추출을 하는데 있어서 빠른 속도로 얼굴의 구성요소들을 분할하고 추출한다. 효율적인 분할과 추출물 위해서 3가지의 정보를 사용한다. 첫 번째는 얼굴의 색상정보로써 배경 속의 얼굴을 찾는데 이용한다. 두 번째는 얼굴의 윤곽선 정보로 얼굴의 구성요소를 추출해 내는데 사용한다. 세 번째는 얼굴의 구조적인 정보를 이용하여 색상 및 윤곽선 정보를 이용하여 추출된 요소에 대해 얼굴의 다른 구성요소를 추출하는데 이용한다.

  • PDF