• Title/Summary/Keyword: continuum models

Search Result 147, Processing Time 0.021 seconds

Propagation of the ionizing radiations leaked out of bright H II regions into the diffuse interstellar medium

  • Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Diffuse ionized gas (DIG or warm ionized medium, WIM) outside traditional regions is a major component of the interstellar medium (ISM) not only in our Galaxy, but also in other galaxies. It is generally believed that major fraction of the Halpha emission in the DIG is provided by OB stars. In the "standard" photoionization models, the Lyman continuum photons escaping from bright H II regions is the dominant source responsible for ionizing the DIG. Then, a complex density structure must provide the low-density paths that allow the photons to traverse kiloparsec scales and ionize the gas far from the OB stars not only at large heights above the midplane, but also within a galactic plane. Here, I present Monte-Carlo models to examine the propagation of the ionizing radiation leaked out of traditional H II regions into the diffuse ISM applied to two face-on spirals M 51 and NGC 7424. We find that the "standard" scenario requires absorption too unrealistically small to be believed, but the obtained scale-height of the galactic disk is consistent with those of edge-on galaxies. We also report that the probability density functions of the Halpha intensities of the DIG and H II regions in the galaxies are log-normal, indicating the turbulence property of the ISM.

  • PDF

Computational Study on Protolytic Dissociation of HCl and HF in Aqueous Solution

  • Kim, Chang Kon;Park, Byung Ho;Sohn, Chang Kook;Yu, Yu Hee;Kim, Chan Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1029-1035
    • /
    • 2014
  • The protolytic dissociation process of hydrochloric acid (HCl) and hydrofluoric acid (HF) is studied using the B3LYP and MP2 methods with the 6-311+G(d,p) basis set in the gas phase and in aqueous solution. To study the phenomena in detail, discrete and discrete/continuum models were applied by placing water molecules in various positions around the acid. The dissociation process was studied using the thermodynamic cycle involving the structures optimized both in the gas phase and in aqueous solution and was analyzed with two key energy factors, relaxation free energy (${\Delta}G_{Rex(g)}$) and solvation free energy (${\Delta}G_s$). Based on the results, we could understand the dissociation mechanism and wish to propose the best way to study acid dissociation process using the CPCM methodology in aqueous solution.

Risk Assessment and Pharmacogenetics in Molecular and Genomic Epidemiology

  • Park, Sue-K.;Choi, Ji-Yeob
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.371-376
    • /
    • 2009
  • In this article, we reviewed the literature on risk assessment (RA) models with and without molecular genomic markers and the current utility of the markers in the pharmacogenetic field. Epidemiological risk assessment is applied using statistical models and equations established from current scientific knowledge of risk and disease. Several papers have reported that traditional RA tools have significant limitations in decision-making in management strategies for individuals as predictions of diseases and disease progression are inaccurate. Recently, the model added information on the genetic susceptibility factors that are expected to be most responsible for differences in individual risk. On the continuum of health care, from diagnosis to treatment, pharmacogenetics has been developed based on the accumulated knowledge of human genomic variation involving drug distribution and metabolism and the target of action, which has the potential to facilitate personalized medicine that can avoid therapeutic failure and serious side effects. There are many challenges for the applicability of genomic information in a clinical setting. Current uses of genetic markers for managing drug therapy and issues in the development of a valid biomarker in pharmacogenetics are discussed.

Strut-and-tie model of deep beams with web openings - An optimization approach

  • Guan, Hong
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.361-379
    • /
    • 2005
  • Reinforced concrete deep beams have useful applications in tall buildings and foundations. Over the past two decades, numerous design models for deep beams were suggested. However even the latest design manuals still offer little insight into the design of deep beams in particular when complexities exist in the beams like web openings. A method commonly suggested for the design of deep beams with openings is the strut-and-tie model which is primarily used to represent the actual load transfer mechanism in a structural concrete member under ultimate load. In the present study, the development of the strut-and-tie model is transformed to the topology optimization problem of continuum structures. During the optimization process, both the stress and displacement constraints are satisfied and the performance of progressive topologies is evaluated. The influences on the strut-and-tie model in relation to different size, location and number of openings, as well as different loading and support conditions in deep beams are examined in some detail. In all, eleven deep beams with web openings are optimized and compared in nine groups. The optimal strut-and-tie models achieved are also compared with published experimental crack patterns. Numerical results have shown to confirm the experimental observations and to efficiently represent the load transfer mechanism in concrete deep beams with openings under ultimate load.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

A Study on Subsidence of Soft Ground Using Artificial Neural Network (인공신경망을 이용한 DCM 처리된 연약지반 침하에 대한 연구)

  • Kang, Yoon-Kyung;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • When industrial structures are constructed on soft ground, ground subsidence is occurred by problems of bearing capacity. To protect ground subsidence have to improve soft ground, and have to predict settlement estimation for reasonable construction. Artificial Neural Networks(ANN) is adopted for prediction of settlement of construction during the initial design. In the study, Artificial Neural Networks are applied to predict the settlement estimation of initial condition ground and ground improved by D.C.M method. Also, this study compares results of Artificial Neural Networks and results of continuum analysis using Mohr-Coulomb models. In result, settlements of initial condition ground decreased over 0.7 times. Also, by comparing ANN and continuum analysis, coefficient of determination was comparatively high value 0.79. Thought this study, it was confirmed that settlements of improvement ground is predicted using laboratory experiment data.

The Use of Rasch Model in Developing a Short Form Based on Self-Reported Activity Measure for Low Back Pain

  • Choi, Bong-Sam
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.56-66
    • /
    • 2014
  • For maintaining adequate psychometric properties when reducing the number of items from an instrument, item level psychometrics is crucial. Strategies such as low item correlation or factor loadings, using classical test theory, have traditionally been advocated. The purpose of this study is to describe the development of a new short form assessing the impact of low back pain on physical activity. Rasch measurement model has been applied to the International Classification of Functioning, Disability and Health Activity Measure (ICF-AM). One hundred and one individuals with low back pain aged 19-89 years (mean age: $48.1{\pm}17.3$) who live in the community were participated in the study. Twenty-seven items of lifting/carrying construct of the ICF-AM were analyzed. Ten items were selected from the construct to create a short form. Item elimination criteria include: 1) high or low mean square (out of the range: .6-1.4 for the fit statistics), 2) similar item calibrations to adjacent items, 3) person separation value, and item-person map for potential gap in person ability continuum. All 10 items of the short form fit to the Rasch model except one item (i.e., carrying toddler on back). Despite its high infit and outfit statistics (1.90/2.17), the item had to be reinstated due to potential gaps at the upper extreme of person ability level. The short form had a slightly better spread of person ability continuum compared to the entire set of item. The created short form separated individuals with low back pain into nearly 4 groups, while the entire set of items separated the individuals into 6 groups. The findings prompted multidimensional models for better explanation of the lifting/carrying domain. The item level psychometrics based on the Rasch model can be useful in developing short forms with rationally retained items.

Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model

  • Hussain, Muzamal;Naeem, Muhammad N.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.301-312
    • /
    • 2020
  • This research deals with the study of the orthotropic vibrational features of single-walled carbon nanotubes according to Kelvin's model and to check the accuracy of the models, the results have been compared with earlier modeling/simulations. Obtaining rough approximations of the natural frequencies of CNTs using continuum equations are still a common procedure, even at high harmonics. The effects of different physical and material parameters on the fundamental frequencies are investigated for zigzag and chiral single-walled carbon nanotubes invoking Kelvin's theory. By using nonlocal Kelvin's model, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes (SWCNTs) have been calculated. The influence of frequencies with nonlocal parameters and bending rigidity are investigated in detail for these tubes. Computer software MATLAB is utilized for the frequencies of SWCNTs and current results shows a good stability with comparison of other studies.

Dynamic behavior of footbridges strengthened by external cable systems

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.595-608
    • /
    • 2018
  • This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.