• Title/Summary/Keyword: continuum finite element

Search Result 240, Processing Time 0.031 seconds

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, J.H.;Gwak, H.G.;Grandhi, R.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

A Study on the Stability Evaluation and Numerical Simulation of Toppling Failure on a Cut-Slope (절토사면의 전도파괴에 대한 안정성 평가 및 수치해석적 고찰)

  • Choi, Ji-Yong;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Toppling failure of a slope is defined as failure behavior accompanying the rotation of rock block which is different from other failure such as sliding along with discontinuities and so on. It generally occurs in the region that discontinuities were developed with inverse dip direction to a slope and it could play a critical role in judging stability of slope. In this study, the stability evaluation was performed about toppling failure on a jointed road cut-slope. To check the deformation behavior, numerical analysis is widely used. However common analysis programs are based on continuum model. Recently, many methods that discontinuity properties can be considered in continuum analysis are suggested. In this study, numerical analysis based on FEM(Finite Element Method) was performed using interface element applied in heterogeneous boundary to simulate effects of discontinuities.

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

A Study of Strength of Damaged Ship Structures Using Damage Simulator (Damage simulator를 이용한 선박의 손상강도에 관한 연구)

  • Han, Dae-Suk;Cho, Dae-Seung;Kim, Jin-Hyung;Lee, Tak-Kee;Rim, Chae-Whan;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • A damage analysis simulator, which is applicable for evaluating the residual strength of damaged ship, was developed in this paper. For this process, CDM (Continuum Damage Mechanics) approach has been implemented to the simulator by virtue of the numerical technique for evaluation of crack initiation and/or enlargement. A damage calculation program has been linked with a commercial finite element analysis code (NASTRAN) and a ultimate strength evaluation program (LSAP) in order to assess residual strength of damaged ship. As a results of series calculation for the frigate model, giving the quantitative structural damage to the ultimate strength evaluation, a residual strength with damage is predicted to be at least 70 percentage lower than the case of intact condition. It was found that the proposed technique can be used as a design support tool in the field of simulation based ship design.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.