• 제목/요약/키워드: continuous-valued attribute

검색결과 6건 처리시간 0.021초

증분 의사결정 트리 구축을 위한 연속형 속성의 다구간 이산화 (Multi-Interval Discretization of Continuous-Valued Attributes for Constructing Incremental Decision Tree)

  • 백준걸;김창욱;김성식
    • 대한산업공학회지
    • /
    • 제27권4호
    • /
    • pp.394-405
    • /
    • 2001
  • Since most real-world application data involve continuous-valued attributes, properly addressing the discretization process for constructing a decision tree is an important problem. A continuous-valued attribute is typically discretized during decision tree generation by partitioning its range into two intervals recursively. In this paper, by removing the restriction to the binary discretization, we present a hybrid multi-interval discretization algorithm for discretizing the range of continuous-valued attribute into multiple intervals. On the basis of experiment using semiconductor etching machine, it has been verified that our discretization algorithm constructs a more efficient incremental decision tree compared to previously proposed discretization algorithms.

  • PDF

데이터 분포를 고려한 연속 값 속성의 이산화 (Discretization of Continuous-Valued Attributes considering Data Distribution)

  • 이상훈;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.391-396
    • /
    • 2003
  • 본 논문에서는 특정 매개변수(parameter)의 입력 없이 속성(attribute)에 따른 목적속성(class)값의 분포를 고려하여 연속형(continuous) 속성 값을 범주형(categorical)의 형태로 변환시키는 새로운 방법을 제안하였다. 각각의 속성에 대해 목적속성의 분포를 1차원 공간에 사상(mapping)하고, 각 목적속성의 밀도, 다른 목적속성과의 중복 정도 등의 기준에 따라 구간을 군집화 한다. 이렇게 생성된 군집들은 각각 목적속성을 예측할 수 있는 확률적 수치에 기반한 것으로, 각 속성이 제공하는 정보의 손실을 최소화 하는 이산화 경계선을 갖고 있다. 제안된 데이터 이산화 방법의 향상된 성능은 C4.5 알고리즘과 UCI Machine Learning Data Repository 데이터를 사용하여 확인할 수 있다.

분류학습을 위한 연속 애트리뷰트의 이산화 방법에 관한 연구 (Discretization of Continuous-Valued Attributes for Classification Learning)

  • 이창환
    • 한국정보처리학회논문지
    • /
    • 제4권6호
    • /
    • pp.1541-1549
    • /
    • 1997
  • 대부분의 기계학습 방법들은 이산형의 데이타를 학습에 사용되는 데이타의 형식으로 요구하고 있다. 따라서 연속형 데이타의 경우는 기계학습 방법들을 적용하기 전에 그 데이타를 이산형으로 바꾸어 주는 과정이 필요하다. 이러한 이산화 과정은 그 중요성에 비하여 상대적으로 관련 연구가 미비한 수준이다. 따라서 이 논문은 정보이론을 사용하여 연속형 자료를 이산형의 형태로 변환시키는 새로운 방법을 제안하였다. 각 애트리뷰트의 값들이 목적 애트리뷰트에 제공하는 정보의 량을 엔트로피 함수의 일종인 Hellinger 변량을 이용하여 계산하였으며, 각 애트리뷰트마다 제공하는 정보의 손실을 최소화할 수 있는 이산화 경계선을 계산하였다. 본 논문이 제안한 방법의 성능을 ID3 와 신경망 알고리즘을 사용하여 기존의 이산화 방법들과 비교하였으며 거의 대부분 우수한 정확성을 보였다.

  • PDF

데이터 분포를 고려한 연속 값 속성의 이산화 (Discretization of continuous-valued attributes considering data distribution)

  • 이상훈;박정은;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.217-220
    • /
    • 2003
  • 본 논문에서는 특정 매개변수의 입력 없이 속성(attribute)에 따른 목적속성(class)값의 분포를 고려하여 연속형(conti-nuous) 값을 범주형(categorical)의 형태로 변환시키는 새로운 방법을 제안하였다. 각각의 속성에 대해 목적속성의 분포를 1차원 공간에 사상(mapping)하고, 각 목적속성의 밀도, 다른 목적속성과의 중복 정도 등의 기준에 따라 구간을 군집화 한다. 이렇게 생성된 군집들은 각각 목적속성을 예측할 수 있는 확률적 수치에 기반한 것으로, 각 속성이 제공하는 정보의 손실을 최소화하는 이산화 경계선을 갖고 있다. 제안된 데이터 이산화 방법의 향상된 성능은 C4.5 알고리즘과 UCI Machine Learning Data Repository 데이터를 사용하여 확인할 수 있다.

  • PDF

전력 부하 패턴 자동 예측을 위한 분류 기법 (Classification Methods for Automated Prediction of Power Load Patterns)

  • ;박진형;이헌규;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.26-30
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  • PDF

최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측 (Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule)

  • 엄재홍;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2006
  • 단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.