• Title/Summary/Keyword: continuous tool-path

Search Result 22, Processing Time 0.022 seconds

Continuous Tool-path Generation for High Speed Machining

  • Lee, Eung-Ki;Hong, Won-Pyo;Park, Jong-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.31-36
    • /
    • 2002
  • A continuous tool-path, that is to cut continuously with the minimum number of cutter retractions during the cutting operations, is developed in order to minimise the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM (high-speed machining). This algorithm begins with the offset procedure along the boundary curve of the sculptured surface being machined. In the of offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed machining. Then, the continuous path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to neighbor paths without cutter retractions. Therefore, the minimum tool retraction tool-path can be generated And, it allows the sculptured surface incorporating both steep and flat areas to be high-speed machined.

A Study on Layout Method for Effective NC Cutting Path of the Flat-bar (선박용 플랫바의 효율적인 NC 절단경로를 고려한 배치방법에 관한 연구)

  • 이철수;박성도;박광렬;임태완;양정희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2004
  • In this paper, the efficient layout method for generating common and continuous cutting path of flat-bar profile. The ‘flat -bar’ is a stiffener and has long rectangular shape. This paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. By using this common and continuous path, the machining-time for cutting and the maintenance-cost of plasma-torch could be reduced. Proposed procedures are written in C-language and applied to the Interactive Flat-Bar-Nesting System executable on Open VMS with X-Window system.

Process Improvement of Continuous Casting Mold using CAM Program (CAM 프로그램을 이용한 연속주조 몰드의 공정 개선)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.228-234
    • /
    • 1998
  • This study is object to process improvement of continuous casting mold. For process improvement of continuous casting mold using CAD, CAM software and CNC machining center. CAM software is purpose of G-code generation for CNC programming. Then CAM software and CNC machining center are connect to RS-232C cable.

  • PDF

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Tool Path Analysis and Motion Control of 3D Engraving Machine

  • Smerpitak, Krit;Pongswatd, Sawai;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1245-1248
    • /
    • 2004
  • This paper presents a new technique to analyze data on the coordinate x, y, z and apply these data to design the motion control to improve the efficiency of the engraving machine so that it can engrave accordingly in 3 dimensions. First, the tool path on the x-y plane is analyzed to be synchronized with the z-axis. The digital data is then sent to the motion control to guide the movement of the engrave point on the x-y plane. Tool path moves along the x-axis with zero degree and different values of the y-axis according to the coordinate of the digital data and the analysis along z-axis to determine the depth for engraving. The depth can be specified from the gray level with the 256 levels of resolution. The data obtained includes the distances on x-axis, y-axis, and z-axis, the acceleration of the engrave point's movement, and the speed of the engrave point's movement. These data is then transfered to the motion control to guide the movement of the engrave point along the z-axis associated with the x-y plane. The results indicate that engraving using this technique is fast and continuous. The specimen obtained looks perfect in 3D view.

  • PDF

A complete S-shape feed rate scheduling approach for NURBS interpolator

  • Du, Xu;Huang, Jie;Zhu, Li-Min
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.206-217
    • /
    • 2015
  • This paper presents a complete S-shape feed rate scheduling approach (CSFA) with confined jerk, acceleration and command feed rate for parametric tool path. For a Non-Uniform Rational B-Spline (NURBS) tool path, the critical points of the tool path where the radius of curvature reaches extreme values are found firstly. Then, the NURBS curve is split into several NURBS sub-curves or blocks by the critical points. A bidirectional scanning strategy with the limitations of chord error, normal/tangential acceleration/jerk and command feed rate is employed to make the feed rate at the junctions between different NURBS blocks continuous. To improve the efficiency of the feed rate scheduling, the NURBS block is classified into three types: short block, medium block and long block. The feed rate profile corresponding to each NURBS block is generated according to the start/end feed rates and the arc length of the block and the limitations of tangential acceleration/jerk. In addition, two compensation strategies are proposed to make the feed rate more continuous and the arc increment more precise. Once the feed rate profile is determined, a second-order Taylor's expansion interpolation method is applied to generate the position commands. Finally, experiments with two free-form NURBS curves are conducted to verify the applicability and accuracy of the proposed method.

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Generation of Constant Orientation in Industrial Robots (산업용 로봇의 일정한 방향성 생성)

  • 이승황;양승한;박용국
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • In general there are many degrees of freedom(DOFs) in industrial robots. So they have many poses of several special end-effectors positions and orientations. For that reason, industrial robots are used in a wide scope of industrial applica-tions such as welding, spray painting, deburring, and so on. In this research, an off-line continuous path planning method based on linear interpolation with parabolic blend is developed. The method safely maintains the constant orientation for base frame and end-effectors path within allowable error and minimizes the number of segments in path. This algorithm may apply to welding and painting in which the orientation is particularly significant. The simulation study of cartesian curve is carried out to show the performance of this algorithm.

  • PDF