• Title/Summary/Keyword: continuous speech

Search Result 319, Processing Time 0.028 seconds

Development of Continuous Speech Recognition System for Multimedia Mobile Terminal Applications (휴대 멀티미디어 단말용 음성인식 시스템 개발)

  • 김승희
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.59-62
    • /
    • 1998
  • 본 논문에서는 한국전자통신연구원의 Handy Combi 응용 도메인을 대상으로 한 화자독립 연속음성인식 시스템 개발에 관하여 기술한다. 불특정화자가 자연스럽게 발음한 연속음성을 인식하는 기술은 펜인식 등과 더불어 멀티모달 인터페이스의 핵심 요소로서, 이동 환경에서 사용자의 다양한 요구사항을 처리하는 지능형 에이전트에 구현을 위해 필수적으로 개발되어야 하는 기술이다. 본 논문에서는 연속확률분포를 가지는 Hidden Markov Model(HMM) 기반의 연속음성인식 시스템을 구현하였다. 개발된 시스템은 음성특징벡터로 MFCC를 사용하였으며, 음소 모델의 강인한 훈련을 위해 음성학적 지식에 기반을 둔 tree-based clustering 방식을 도입하였다. 인식단계에서는 인식속도를 개선시키기 위해 beam-search 기법을 적용하였다. 인식 실험 결과, 99.7%의 어절 인식률과 98.8%의 문장 인식률을 얻었으며, 최종적인 문장의 이해도는 99% 이상이었다.

  • PDF

A Study on the Speech Recognition For the Voice Dialing System (Voice Dialing System을 위한 음성인식)

  • 이성권
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.365-368
    • /
    • 1998
  • 본 연구는 음소 단위의 CHMM(Continuous Hidden Markov Model)을 이용한 Voice Dialing System을 위한 연속 음성인식에 관한 내용이다. 연구실 환경에서 음성으로 전화를 걸기 위하여 전국 지역명과 연속 숫자음 인식을 수행하였다. ETRI 445 데이터를 사용하여 초기의 모델은 ML(Maximum Likelihood) 추정법을 이용하여 작성하였고 적응화를 위해 최대 사후 확률 추정법을 사용하였다. 음성으로 다이얼링을 수행하기 위하여 문맥자유문법을 이용하여 제한적이나마 대화체문장으로 수행할 수 있도록 하였다. 그리하여 숫자음에 대하여 5인의 화자에 대하여 4연속 숫자음에 대하여 96%의 인식률을 보이고 있으며 7연속 숫자음에 대하여도 약 91%의 결과를 보여주고 있다. 문장으로도 음성 다이얼링을 수행하였을 경우 문장내에 단어와 숫자음에 대하여 약 80%의 인식률을 보였다.

  • PDF

A Study on the Phoneme Segmentation Using Neural Network (신경망을 이용한 음소분할에 관한 연구)

  • 이광석;이광진;조신영;허강인;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.472-481
    • /
    • 1992
  • In this paper, we proposed a method of segmenting speech signal by neural network and its validity is proved by computer simulation. The neural network Is composed of multi layer perceptrons with one hidden layer. The matching accuracies of the proposed algorithm are measured for continuous vowel and place names. The resulting average matching accuracy is 100% for speaker-dependent case, 99.5% for speaker-independent case and 94.5% for each place name when the neural network 1,; trained for 6 place names simultaneously.

  • PDF

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

A Study on Speaker-Independent Speech Recognition Using a Hybrid System of Semi-Continuous HMM and RBF (반연속 HMM과 RBF 혼합 시스템을 이용한 화자독립 음성인식에 관한 연구)

  • Moon Yun Joo;June Sun Do;Kang Chul Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.36-39
    • /
    • 1999
  • 본 논문에서는 기존의 반연속 HMM과 신경망 알고리즘인 RBF(Radial Basis Function)를 혼합한 형태를 음성인식에 적용한다. 기존의 반연속 HMM은 학습 과정에서 모든 모델과 상태에서 공유되는 L개의 가우시안 확률 밀도들과 각가우시안 확률 밀도들의 가중치를 결정하는 흔합 밀도계수 의해 입력 음성의 특징을 확률적으로 모델링하는 혼합 확률을 얻고 또 Maximum likelihood와 Baum-Welch 알고리즘을 이용해 초기확률, 전이확률, 관측확률, 평균벡터 $\mu$, 공분산 행렬 $\Sigma$을 학습해 나간다. 그러나 제안한 RBF/반연속 HMM 혼합형태는 RBF의 변형된 방식을 첨가해 반연속 HMM 관측 파라미터를 RBF에 의해 결정함으로써 보단 분별릭 있는 화자독립 인식 시스템이 된다. 그래서 인식 실험결과 인식률에 있어서 기존의 반연속 HMM보다 향상된 인식률을 얻는다.

  • PDF

Large Vocabulary Continuous Speech Recognition using Stochastic Pronunciatioin Lexicon Modeling (확률 발음사전을 이용한 대어휘 연속음성인식)

  • 윤성진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.315-319
    • /
    • 1998
  • 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 제안된 확률 발음 사전은 연속음성과 같은 자연스런 발성에서 자주 발생되는 단어의 변이를 확률적인 subword-state로 이루어진 HMM으로 모델화 함으로써 단어의 발음 변이를 효과적으로 표현할 수 있으며, 단위 인식 시스템의 성능을 보다 높일 수 있도록 구성되었다. 확률 발음사전의 생성은 음성 자료와 음소 모델을 이용하여 단어 단위의 분할과 학습을 통해서 자동으로 생성되게 됨 음소와 같은 언어학적인 단위뿐만 아니라 PLU 이나 비언어학적인 인식 모델을 이용한 연속음성인식기에도 적용이 가능하다.연속음성인식실험결과 확률 발음사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 39.8%, 문장 오류율은 24.4%의 큰 폭으로 오류율을 감소시킬 수 있었다.

  • PDF

Pseudo-Morpheme-Based Continuous Speech Recognition (의사 형태소 단위의 연속 음성 인식)

  • 이경님
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.309-314
    • /
    • 1998
  • 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소를 정의하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 37개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다. 각 음성신호 구간에 해당되는 의사 형태소가 인식되면 언어모델을 사용하여 구성된 의사 형태소 단위의 상위 5개 문장을 기반으로 시작 시점과 끝 시점, 그리고 확률 값을 가진 의사 형태소 격자를 생성하고, 음성 사전으로부터 태그 정보를 격자에 추가하였다. Tree-trellis 탐색 알고리즘 기반에 의사 형태소 접속정보를 사용하여 음성언어 형태소 해석을 수행하였다. 본 논문에서 제안한 의사 형태소를 문장의디코딩 단위로 사용하였을 경우, 사전의 크기면에서 어절 기반의 사전 entry 수를 현저히 줄일 수 있었으며, 문장 인식률면에서 문자기반 형태소 단위보다 약 20% 이상의 인식률 향상을 얻을 수있었다. 뿐만 아니라 형태소 해석을 수행하기 위해 별도의 분석과정 없이 입력값으로 사용되며, 전반적으로 문자을 구성하는 디코딩 수를 안정화 시킬 수 있었다. 이 결과값은 상위레벨 언어처리를 위한 입력?으로 사용될 뿐만 아니라, 언어 정보를 이용한 후처리 과정을 거쳐 더 나은 인식률 향상을 꾀할 수 있다.

  • PDF

On the Classification of Voice Sound and the Recognition of Vowels for Korean Continuous Speech (한국어 연속음인식에 관한 연구(유성음 분류 및 단모음 인식 ))

  • 하판봉;이철희;방승찬;안수길
    • The Journal of the Acoustical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.28-35
    • /
    • 1986
  • 우리나라 음성의 유성음을 모음, 비음 및 유성화 자음으로 분류하는 알고리즘을 기술하였다. 먼 저 기존의 PITCH 검출 알고리즘에 의하여 음성을 유성음과 무성음으로 나눈 뒤, 단지 정규화된 1차 상 관계수, 영교차율, LOG 에너지 및 LPG 에너지의 골짜기 검출만을 이용하여, 유성음은 모음, 비음 및 유 성화자음으로 분류하고 무성음은 실제의 무성음과 묵음으로 분류하였다. 그리고 이렇게 분류된 모음에 대하여 단모음 인식을 행하였다. 단지 한 FRAME으로 모음을 대표하였기 때문에 메모리 크기와 인식 시간을 줄였다. 여기서 UP & DOWN 및 수정된 영교차율을 새로이 정의하여 적용한 결과 만족한 결과 를 얻을 수 있었다. LPC 매개변수 및 전력 스펙트럼도 단모음 인식의 FEATURE로 사용하였다. 그리고 각 FEATURE 의 성능을 비교하였다. 이들 FEATURE을 잘 조합하여 2단계 인식을 행한 결과 92%의 높은 인식율을 얻을 수 있었다.

  • PDF

A Portable Mediate Interface 'Handybot' for the Rich Human-Robot Interaction (인관과 로봇의 다양한 상호작용을 위한 휴대 매개인터페이스 ‘핸디밧’)

  • Hwang, Jung-Hoon;Kwon, Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.735-742
    • /
    • 2007
  • The importance of the interaction capability of a robot increases as the application of a robot is extended to a human's daily life. In this paper, a portable mediate interface Handybot is developed with various interaction channels to be used with an intelligent home service robot. The Handybot has a task-oriented channel of an icon language as well as a verbal interface. It also has an emotional interaction channel that recognizes a user's emotional state from facial expression and speech, transmits that state to the robot, and expresses the robot's emotional state to the user. It is expected that the Handybot will reduce spatial problems that may exist in human-robot interactions, propose a new interaction method, and help creating rich and continuous interactions between human users and robots.

Plosive consonants recognition using acoustic properties with the frames representing each phoneme (조음 특성과 음소 대표 구간을 이용한 우리말 파열음의 인식)

  • 박찬응;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.33-41
    • /
    • 1997
  • Korean unvoiced phonemes consist of nonstationary parts comparing that the vowels and nasal consonants consist of quasi-stationary part. And some phonemes, which have smae point of articulation but differnt manner of articulation, has similar characteristics, so it makes to be hard to distinguish each other. A new method usin gchanges and characteristics of acoustic properties of these phonemes to improve recognition rate are proposed. And because these changes and cahracteristics evidently occur in continuous speech except some unvoiced consonants are articulated as voiced phoneme in case to be used as an midial between voiced phonemes, this method can be applied easily. The features of the frames extracted to represent each phonemes are used asinputs to the hierarchical neural network. And with these results final decision for phoneme recognition is made thorugh post processing which the new method is applied to. Through the experimental recognition results for 9 unvoiced consonants which belong to bilabial, alveolar, and velar phoneme series, 89.4% recognition rate to distinguish in same phoneme series is obtained, and 85.6% recognition rate is obtained in case of including cistinguishing phoneme series.

  • PDF