• 제목/요약/키워드: continuous rainfall

검색결과 217건 처리시간 0.024초

2D-Video Distrometer를 이용한 강수의 물리적 특성에 관한 사례연구 (Case Study on the Physical Characteristics of Precipitation using 2D-Video Distrometer)

  • 박종길;천은지;정우식
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.345-359
    • /
    • 2016
  • This study analyze the synoptic meteorological cause of rainfall, rainfall intensity, drop size distribution(DSD), fall velocity and oblateness measured by the 2D-Video distrometer(2DVD) by comparing two cases which are heavy rainfall event case and a case that is not classified as heavy rainfall but having more than $30mm\;h^{-1}$ rainrate in July, 2014 at Gimhae region. As a results; Over the high pressure edge area where strong upward motion exists, the convective rain type occurred and near the changma front, convective and frontal rainfall combined rain type occurred. Therefore, rainrate varies based on the synoptic meteorological condition. The most rain drop distribution appeared in the raindrops with diameters between 0.4 mm and 0.6 mm and large particles appeared for the convective rain type since strong upward motion provide favorable conditions for the drops to grow by colliding and merging so the drop size distribution varies based on the location or rainfall types. The rainfall phases is mainly rain and as the diameter of the raindrop increase the fall velocity increase and oblateness decrease. The equation proposed based on the 2DVD tends to underestimated both fall velocity and oblateness compared with observation. Since these varies based on the rainfall characteristics of the observation location, standard equation for fall velocity and oblateness fit for Gimhae area can be developed by continuous observation and data collection hereafter.

격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의 (Simulation of dam inflow using a square grid and physically based distributed model)

  • 최윤석;최시중
    • 한국수자원학회논문집
    • /
    • 제57권4호
    • /
    • pp.289-300
    • /
    • 2024
  • 본 연구의 목적은 물리적 분포형 유출 모형인 GRM (Grid based rainfall-Runoff Model)을 이용하여 댐 유입량을 모의함으로써 연속형 모의에 대한 GRM 모형의 적용성을 평가하는 것이다. GRM 모형은 기존에 강우-유출 사상의 모의를 위해서 개발되었으나, 최근에 연속형 모의가 가능하도록 개선되었다. 대상 유역은 충주댐 유역, 안동댐 유역, 용담댐 유역, 섬진강댐 유역이며, 500 m × 500 m의 공간 해상도로 유출 모형을 구축하였다. 모의 기간은 21년(2001년~2021년)이다. 모의결과의 평가는 17년 기간(2005년~2021년)에 대해서 수행하였으며, 17년 전체 자료(total duration), 풍수기(6월~9월, wet season), 갈수기(10월~5월, dry season)의 3개 자료 기간으로 구분하고, 각 댐의 관측된 일유입량과 비교하였다. 모의결과의 적합도 평가는 Nash-Sutcliffe efficiency 계수(NSE), Kling-Gupta efficiency 계수(KGE), 상관계수(CC), 총용적 오차(VE)를 사용하였다. 모의된 댐 유입량의 평가결과 total duration과 wet season에서 관측자료를 잘 재현할 수 있었으며, dry season에서도 저유량 자료의 불확실성을 고려할 때 양호한 모의결과를 나타내었다. 연구결과 GRM 모형의 연속형 모의기법은 적절히 구현된 것으로 판단되었으며, 본 연구의 댐 유입량 모의에 충분히 적용성이 있는 것으로 나타났다.

Analysis of drought in Northwestern Bangladesh using standardized precipitation index and its relation to Southern oscillation index

  • Nury, Ahmad Hasan;Hasan, Khairul
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.58-68
    • /
    • 2016
  • The study explored droughts using the Standardized Precipitation Index (SPI) in the northwestern region of Bangladesh, which is the drought prone area. In order to assess the trend and variability of monthly rainfall, as well as 3-month scale SPI, non-parametric Mann-Kendall (MK) tests and continuous wavelet transform were used respectively. The effect of climatic parameters on the drought in this region was also evaluated using SPI, with the Southern Oscilation Index (SOI) by means of the wavelet coherence technique, a relatively new and powerful tool for describing processes. The MK test showed no statistically significant monthly rainfall trends in the selected stations, whereas the seasonal MK test showed a declining rainfall trend in Bogra, Ishurdi, Rangpur and Sayedpur stations respectively. Sen's slope of six stations also provided a decreasing rainfall trend. The trend of the SPI, as well as Sen's slope indicated an increasing dryness trend in this area. Dominant periodicity of 3-month scale SPI at 8 to 16 months, 16 to 32 months, and 32 to 64 months were observed in the study area. The outcomes from this study contribute to hydrologists to establish strategies, priorities and proper use of water resources.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

낙동강유역 하천유량 예측모형 구축 (Streamflow Forecast Model on Nakdong River Basin)

  • 이병주;배덕효
    • 한국수자원학회논문집
    • /
    • 제44권11호
    • /
    • pp.853-861
    • /
    • 2011
  • 본 연구는 연속형 강우-유출모형과 관측유량 자료동화기법으로 앙상블 칼만필터 기법을 연계한 SURF 모형을 낙동강유역에 적용하여 하천유량예측의 적용성을 평가하고자 하는데 그 목적이 있다. 낙동강유역을 43개 소유역으로 구분하고 2006년과 2007년의 홍수기간 동안 12개 평가지점에 대해 유출모의를 수행하였다. 관측유량 자료동화 효과로 인해 예측유량의 정확도가 향상되며 1~5시간의 예측선행시간별 유효성지수를 분석한 결과 자료동화로 인해 46.2~30.1%의 모의유량의 정확도가 개선되는 것으로 나타났다. 또한 관측강우의 50%를 적용하여 자료동화 전 후의 모의 첨두유량에 대한 평균정상절대오차를 비교하였으며 자료동화로 인해 40% 이상의 정확도가 향상됨을 확인하였다. 이상의 결과로부터 SURF 모형은 낙동강유역의 실시간 하천유량예측에 활용될 수 있을 것으로 판단된다.

분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과 (Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System)

  • 추민경;배효관
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析) (A Studay on the Rainfall and Drought Days in Kyupgpook Area)

  • 서승덕;전국진
    • Current Research on Agriculture and Life Sciences
    • /
    • 제5권
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

한강유역 강우의 시. 공간적 특성 (A Spatial-Temporal Characteristics of Rainfall in the Han River Basin)

  • 이동률;정상만
    • 물과 미래
    • /
    • 제25권4호
    • /
    • pp.75-85
    • /
    • 1992
  • 한강유역의 우량관측소에서 우기동안 관측된 연속시간 강우자료에서 무강우시간으로 분리한 단일호우사상들의 호우수, 강우량, 지속기간, 강우강도를 분석하고 유역을 비슷한 강우특성을 갖는 세지역으로 구분하였다. 또한 Restrepo와 Eagleson이 제안한 독립호우 선정기준의 적용성을 검토하고 이 방법에 의한 독립호우 분리시간을 선정하여 연속시간 강우자료에서 무강우 시간들에 의하여 분리된 단일 호우사상의 시간적 특성과 비교 검토하여 단일호우 분리시간을 제시하였다.

  • PDF

KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석 (Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data)

  • 장민;유철환;지준범;박성화;김상일;최영진
    • 대기
    • /
    • 제26권1호
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.