• Title/Summary/Keyword: continuous logic

Search Result 169, Processing Time 0.028 seconds

Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables (연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조)

  • Lim, Young-Cheol;Park, Jong-Gun;Wi, Seog-Oh;Jung, Hyun-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

Fault Detection of a Spacecraft's Reaction Wheels by Extended Unknown Input Observer (확장형 미지입력 관측기를 이용한 위성 반작용 휠의 고장 검출)

  • Jin, Jae-Hyun;Yong, Ki-Ryeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1138-1144
    • /
    • 2011
  • This article deals with the problem of fault detection of a spacecraft's actuators. The authors introduce an extended unknown input observer for nonlinear systems. This is an extended form of unknown input observers which are used for linear systems. Since faults are not available, those are considered as unknown inputs. Unknown input observers can estimate states without full information of inputs if some conditions are satisfied. The authors suggest a continuous-time extended UIO (eUIO) and prove the convergence of state estimation errors. Since the dynamic equation of a spacecraft is nonlinear, an extended UIO can be applied. Three eUIOs are designed to monitor three reaction wheels. The moving averages of each eUIO's residuals are selected for decision logic. The proposed method is verified by numerical simulations.

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Document Summarization via Convex-Concave Programming

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Document summarization is an important task in various areas where the goal is to select a few the most descriptive sentences from a given document as a succinct summary. Even without training data of human labeled summaries, there has been several interesting existing work in the literature that yields reasonable performance. In this paper, within the same unsupervised learning setup, we propose a more principled learning framework for the document summarization task. Specifically we formulate an optimization problem that expresses the requirements of both faithful preservation of the document contents and the summary length constraint. We circumvent the difficult integer programming originating from binary sentence selection via continuous relaxation and the low entropy penalization. We also suggest an efficient convex-concave optimization solver algorithm that guarantees to improve the original objective at every iteration. For several document datasets, we demonstrate that the proposed learning algorithm significantly outperforms the existing approaches.

Intelligent Fuzzy Controller for Nonlinear Systems

  • Joo, Young-Hoon;Lee, Sang-Jun;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • In this paper, we proposed an intelligent digital redesign method for a class of fuzzy-model-based controllers, effective fur stabilization of continuous-time nonlinear systems. The TS fuzzy model is used to expend the results of the digital redesign technique to nonlinear systems. The proposed method utilized the recently developed LMI technique to obtain a digitally redesigned fuzzy-model-based controller. The intelligent digital redesign problem is converted to equivalent problem, and the LMI method is used to find the digitally redesigned fuzzy-model-based controller. The stabilization conditions of TS fuzzy model are derived for stabilization in the sense of Laypunov stability. In order to demonstrates the effectiveness and feasibility of the proposed controller design methodology, we applied this method to the single link flexible-joint robot arm.

Observer-based sampled-data controller of linear system for the wave energy converter

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.275-279
    • /
    • 2011
  • In this paper, an observer-based sampled-data controller of linear system is proposed for the wave energy converter. Based on the sampled-data observer, the controller is design. In the closed-loop system with controller, it obtains the norm inequality between the continuous-time state variable and the discrete-time one. Using the norm inequality, sufficient condition is derived for the asymptotic stability of the closed-loop system and formulated in terms of linear matrix inequality. Finally, the wave energy converter simulation is provided to verify the effectiveness of the proposed technique.

The Spatial Fuzzy Approach to Multi-Criteria Decision Analysis for Flood Management (홍수터 관리 최적대안 결정을 위한 공간퍼지접근)

  • Lim, Kwang-Suop;Choi, Si-Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1647-1651
    • /
    • 2009
  • The uncertainty or imprecision associated with vague parameters and weighting sets, reduces the ability to decide what alternative is better for a particular location. To efficiently reduce the effect of imprecision frequently arising in available information, fuzzy theory has been used to improve consideration of imprecision in a Multi-Criteria Decision Analysis (MCDA) problem. Fuzzy logic offers a way to represent and handle imprecision present in continuous real world applications. A GIS implementing fuzzy set theory, (referred to in this paper as the "Spatial Fuzzy Approach") enables decision makers to express imprecise concepts associated with geographic data and provides decision makers the ability to have even more definition and discrimination in terms of the best alternatives for a particular spatial location. This study is focused on addressing questions pertaining to the methodology of floodplain analysis using GIS and Spatial Fuzzy MCDA to evaluate flood damage reduction alternatives. The issues will be examined in a case study of the Suyoung River Basin in Pusan, Korea.

  • PDF

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Implementation Privacy Reference Architecture for Forensic Readiness

  • Shin, Yong-Nyuo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2012
  • As the Privacy Act is in force in Korea, the subject of protection responsibility is increased, and continuous efforts are made to protect privacy in overseas countries, as can be seen by standard drafts related to privacy protection. However, the reality is that a formal privacy manual or guidelines are insufficient to help cope with the rapid changes and privacy leak caused by TGIF(Twitter-Google-iPhone-Facebook) these days, and practical effects cannot be expected, even though measures are taken. This paper propose a standard format for satisfying the ISO/IEC 29101 "Privacy Reference Architecture" and shows an implementation example for equipping with forensic readiness capturing indications of the incident rapidly and coming up with an effective counter measure when privacy information is disclosed.