• 제목/요약/키워드: continuous hydrogen production

검색결과 76건 처리시간 0.023초

Chlamydomonas reinhardtii 바이오매스를 이용한 생물학적 수소생산 (Biological hydrogen production using Chlamydomonas reindardtii biomass)

  • 김미선;백진숙;김선창
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.309-316
    • /
    • 2004
  • Chlamydomonas reinhardtii UTEX 90 was cultivated with continuous supply of 2% $CO_2$ using TAP media at $25^\circ{C}$ and produced biomass 1.18 g of dry cell weight/L for 4 days. C. reinhardtii algal biomass(CAB) was concentrated to 20 times by volume and converted into hydrogen and organic acids by anaerobic fermentation using Clostridium butyricum. Organic acids in the fermentate of CAB were consecutively used to produce hydrogen by Rhodobacter sphaeroides KD 131 under the light condition. Approximately 52% of starch in the concentrated CAB which had 4-5.8, 24-26 and 6-7 g/L of starch, protein and fat, respectively was degraded by Cl. butyricum at $37^\circ{C}$. During this process, hydrogen and some organic acids, such as formate, acetate, propionate, and butyrate, respectively were produced. Further conversion of the organic acids in anaerobic fermentate of CAB by Rb. sphaeroides KD131 produced hydrogen from the anaerobic fermentate under the illumination of 8 klux using halogen lamp at $30^\circ{C}$. The result showed that hydrogen was evolved by the anaerobic conversion using Cl. butyricum and then by the photosynthetic fermentation using Rb. sphaeroides KD131. It indicated that the two-step conversion process produced the maximum amount of hydrogen from algal biomass which contained carbohydrate, protein, and fat via organic acids.

SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험 (Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure)

  • 전동근;이기용;김홍곤;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

혐기소화 시 미량 산소가 H2S 제거에 미치는 영향 (Effect of trace oxygen on H2S removal in anaerobic digestion)

  • 조은영;박광수;안종화
    • 산업기술연구
    • /
    • 제39권1호
    • /
    • pp.21-25
    • /
    • 2019
  • This work experimentally determined the effect of microaerobic condition on anaerobic digestion of thickened waste activated sludge in semi-continuous mesophilic digesters at hydraulic retention time of 20 days. The concentration of hydrogen sulfide was $7{\pm}2ppm$ at the microaerobic condition and $14{\pm}2ppm$ at the anaerobic condition. Removal efficiency of volatile solid was not significantly different between microaerobic ($40{\pm}8%$) and anaerobic ($38{\pm}8%$) conditions. There was no important difference between microaerobic ($1,352{\pm}98ml/d$) and anaerobic ($1,362{\pm}104ml/d$) conditions in the biogas production, either. Therefore, it could be concluded that the application of the microaerobic condition was an efficient method of the hydrogen sulfide removal from the biogas.

카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed)

  • 정재욱;남우석;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

Methane의 고온열분해에 의한 Tubluar reactor에서의 수소 및 탄소 생성 특성 (Characteristics of Hydrogen and Carbon Production in Tubluar Reactor by Thermal Decomposition of Methane)

  • 임병권;임종성;최대기;박정근;이영환;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.101-109
    • /
    • 2002
  • This work was focused on the thermal decomposition of methane into hydrogen and carbon black without emitting carbon dioxide. Extensive experimental investigation on the thermal decomposition of methane has been carried out using a continuous flow reaction system with tubular reactor. The experiments were conducted at the atmospheric pressure condition in the wide range of temperature ($950-1150^{\circ}C$) and flow rate (250 - 1500 ml/min) in order to study their dependency on hydrogen yield. During the experiments the carbon black was successfully recovered as an useful product. Undesirable pyrocarbon was also formed as solid film, which was deposited on the inside surface of tubular reactor. The film of pyrocarbon in the reactor wall became thicker and thicker, finally blocking the reactor. The design of an efficient reactor which can effectively suppress the formation of pyrocarbon was thought to be one of the most important subjects in the thermal cracking of methane.

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa;Tanaka, A.;Uehara, A.;Shinzato, I.;Toride, Y.;Usui, N.;Hirakawa, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.700-707
    • /
    • 2010
  • Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

분자량에 따른 Chitosan의 in vitro 대식세포 활성화 (Macrophage Activation of Chitosan Hydrolysates with Different Molecular Weights in vitro)

  • 장현주;전향숙;이서래
    • 한국식품과학회지
    • /
    • 제31권5호
    • /
    • pp.1363-1370
    • /
    • 1999
  • 게껍질 기원의 chitosan을 산가수분해 및 한외여과법으로 제조한 후, 그들의 분자량에 따른 대식세포 활성증진능을 측정하였다. Continuous macrophage cell line J774A.1을 이용한 nitrite 분비능을 비교한 결과, intactchitosan의 농도가 $10\;{\mu}g/ml$일 때 최고의 분비능을 나타냈다. 대식세포의 hydrogen peroxide 분비능은 chitosan 가수분해물 분획 5의 $1,000\;{\mu}g/ml$ 농도에서 $894\;{\mu}M/mg$ macrophage protein을 나타냈으며 chitosan 가수분해물 분획 6의 $100\;{\mu}g/ml$농도에서는 $1,044\;{\mu}M/mg$ macrophage protein의 최고 분비능을 나타냈다. 또 한 $IL-1{\alpha}$ 분비능은 분획 4, 분회 6 및 intact chitosan 에서만 나타났고, tumor necrosis factor의 경우도 chitosan 가수분해물 분획 4, 분회 5, 분회 6 및 Intract chitosan에서 분비능이 컸다. 결론적으로 chitosan 가수분해물 중에서 HPLC법으로 측정한 분사량이 $24,000{\sim}64,000$인 chitosan 가수분해물 분획 4, 분획 5 및 분획 6이 반응성 질소종 분비능을 제외한 대식세포 활성 증 진능이 가장 큰 것으로 나타났다.

  • PDF

Rhodopsedomonas palustris P4를 이용한 Trickle Bed Reactor에서의 일산화탄소와 물로부터 연속적인 수소생산

  • 박지영;이태호;박성훈
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.241-244
    • /
    • 2000
  • CO로부터 수소를 생산할 수 있는 미생물인 R. palustris P4를 반응기에 적용하여 연속적으로 수소를 생산하는 연구를 진행하였다. 고농도 배양을 위해 R. palustris P4를 호기적 조건에서 영양요구성 성장을 시켰고 그 결과 13 g/L정도의 높은 균체 농도를 얻을 수 있었다. CO는 물에 잘 녹지 않는 기상의 기질이므로 반응기내에서 기체의 충분한 체류시간을 제공할 수 있는 반응기인 TBR을 수소생산 단계에 적용하였다. 기체 체류시간이 50분으로 운전되는 조건에서 CO의 분압이 0.4 atm일 때 최대 CO 소모 속도가 16 mmol/L/hr였다. 또한 광합성 미생물 R. rubrum을 적용하여 TBR에서 수소생산을 시도한 Gaddy group의 수소생산속도 3-4 mmol/L/hr에 4-5배 높은 수소생산 속도이다(3).

  • PDF