• Title/Summary/Keyword: continuous heat treatment

Search Result 157, Processing Time 0.022 seconds

Microstructural Characteristics and Hardness of Discontinuous Precipitates Formed by Continuous Cooling and Isothermal Aging in Mg-Al Alloy (Mg-Al 합금에서 연속 냉각 및 등온 시효로 생성된 불연속 석출물의 미세조직 특징과 경도)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.173-179
    • /
    • 2020
  • The purpose of this study was to investigate comparatively the microstructural characteristics and hardness of discontinuous precipitates (DPs) in Mg-9%Al alloy, which were formed by continuous cooling (CC) from 678 K to RT and isothermal aging (IA) at 413 K, respectively. In as-cast state, the Mg-9%Al alloy consisted of partially divorced eutectic β(Mg17Al12) particles with a small amount of DPs showing (α+β) lamellar morphology adjacent to the β particles. The DPs formed by CC had interlamellar spacings in a broad range of 0.85~2.12 ㎛ (1.51 ㎛ in average) owing to the various formation temperatures in response to continuous cooling process. Meanwhile, the DPs formed by IA had relatively narrower interlamellar spacings of 0.14~0.29 ㎛ (0.21 ㎛ in average), which is associated with the low and constant formation temperature. Thinner and higher volume fraction of β phase layers were noticeable in the DPs formed by IA. Higher hardness values were obtained in the DPs formed by IA than the DPs formed by CC, which may well be ascribed to the finer lamellar structure and higher β phase content of the DPs formed by IA.

Characterization of Continuous Cast Cu-Ni-Si Alloys (연속주조된 Cu-Ni-Si계 합금의 특성평가)

  • Lee, Jung-Il;Cho, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.292-298
    • /
    • 2012
  • In this study, Cu-2.5at.%Ni-1at.%Si alloys were fabricated by horizontal continuous casting system to improve the electrical conductivity and mechanical properties of Cu-Ni-Si alloy. Withdrawing speed was changed with 50, 100, 150 and 200 mm/min for the optimum manufacturing condition. Microstructure was observed using OM, FE-SEM and TEM. Electrical conductivity was measured by 4-point probe method and mechanical properties were tested. A horizontal continuous cast thin slab had sound macro and micro structures with partly crystallized structures. Electrical resistivity decreased with increasing annealing temperature from 250 to $850^{\circ}C$, with increasing annealing temperature The maximum hardness and tensile strength were Hv 130, 610 MPa at $550^{\circ}C$, respectively. With changing withdrawing speed from 50 to 150 mm/min, hardness, tensile strength, yield strength and elongation were Hv 60-65, 210-230 MPa, 65-75 MPa and 40-50%, respectively.

Effect of Aging Treatment on the Microstructure and Mechanical Properties of Mg-6Al-xZn (x : 1.5, 2.5) Alloys Fabricated by Squeeze Casting (용탕단조된 Mg-6Al-xZn (x=1.5, 2.5) 합금(合金)의 미세조직 및 기계적 성질에 미치는 시효의 영향)

  • Kim, Soon Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This study has investigated the effect of aging treatment on the microstructure and mechanical properties of Mg-6Al-xZn(x = 1.5, 2.5) alloys fabricated by the squeeze casting process. The microstructures of as-squeeze cast were composed of pro-eutectic ${\alpha}$, super saturated ${\alpha}$ and ${\beta}(Mg_{17}Al_{12})$ compound. Aged at both $200^{\circ}C$ and $240^{\circ}C$, Mg-6Al-xZn alloys showed the peak hardness due to the formation of ${\beta}(Mg_{17}Al_{12})$ precipitates. The discontinuous precipitates of the lamella type are predominant at $200^{\circ}C$ aging treatment, while the finely dispersed continuous precipitates were dominant at $240^{\circ}C$ aging treatment. Mg-6Al-xZn alloys fabricated by the squeeze casting process had the better combination of tensile strength and elongation compared to the conventionally cast alloys. As zinc contents increased, the tensile strength was increased by the solid solution strengthening effect of zinc.

  • PDF

The Effect of Isothermal Annealing on Microstructure of Forged Parts (단조품의 등온 어닐링에 따른 미세조직 변화)

  • Kim, D.B.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

A Study on the Film Boiling-Quenching Process of the Hot Surface for the Heat Treatment of Metals (1st Report, Cooling Curves and Transient Boiling Heat Transfer during the Quenching Process of Carbon Steel) (金屬熱處理를 위한 高溫面의 膜沸騰急冷却에 관한 硏究 (第1報, 炭素鋼 켄칭 過程의 冷却曲線과 過渡沸騰熱傳達))

  • Yun, Seok-Hun;Hong, Yeong-Pyo;Kim, Gyeong-Geun;Jeong, Dae-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.57-65
    • /
    • 1991
  • The quenching of steels by water is one of the important problems in engineering for the applications of heat treatment or continuous casting process, but the fundamental researches by the theoretical approaches have not been satisfactorily improved yet. The very rapid cooling problems by the thermal conduction including the latent heat of phase transformation in steel and the transient boiling heat transfer of water on the surface of the steel covering from $850^{\circ}C$ to $20^{\circ}C$ are the key problems of heat treatment. The present quenching experiments are performed for the cylindrical specimens of carbon steel, S45C of diameters (12-30). Nonlinear transient heat conduction and transient boiling heat transfer problem of water on the surface of specimens is analyzed by the numerical method of inverse heat conduction problem. The conditions for the calculation are that the initial temperature of specimens is $820^{\circ}C$ and the cooling water in bath are $20^{\circ}C$,$40^{\circ}C$,$60^{\circ}C$,$80^{\circ}C$,$95^{\circ}C$ with no agitation.

  • PDF

Structural and electrical properties of ZnO:Al, In thin film (ZnO:Al,In 박막의 구조적 및 전기적 특성)

  • 박경일;서무룡;홍범표;김정규;전춘배;박기철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.395-397
    • /
    • 1998
  • NH$_{3}$ gas sensitive ZnO:Al, In thin films were prepared by the heat treatment following continuous deposition of very thin In layer and ZnO:Al layer to obtain the modified surface morphology for good sensitivity. Dependence of the structural electrical and optical properties of them on heat treatment temperature was investigated by x-ray diffraction, SEM, 4-point probe method and spectrophotometer.

  • PDF

The Production of Tantalum Powder by MR and EMR Method (MR법 및 EMR법에 의한 탄탈륨 분말 제조)

  • Bae, In Seong;Park, Hyeoung Ho;Kim, Byung Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • In conventional metallothermic reduction(MR) for obtaining tantalum powder in batch-type operation, it is difficult to control morphology and location of deposits because the reaction occurs by direct physical contact between reductants and feed materials. On the other hand, a electronically mediated reaction(EMR) is capable to overcome these difficulties through the reaction by electron transfer and have a merit of continuous process. In this study an MR and EMR method has been applied to the production of a tantalum powder by sodium reduction of $K_2TaF_7$. As the reduction temperature increases, the particle size and yield of tantalum powder obtained by MR and EMR method is increased.

Dependence of Damping Capacity on ${\beta}$ Phase Precipitation in Mg Alloy (Mg 합금에서 진동감쇠능의 ${\beta}$상 석출 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.306-310
    • /
    • 2007
  • Changes in microstructure and damping capacity with aging time for solutionized Mg-Al alloy have been investigated. Discontinuous ${\beta}\;(Mg_{17}Al_{12})$ precipitates form along the primary grain boundaries, the amount of which increases as the aging time increases. The hardness of the matrix with respect to aging time shows a typical "S" shape, indicating a generation of fine continuous precipitates in the matrix during the aging. The peak level of damping capacity is obtained after 1 hour of aging, over which the damping capacity becomes deteriorated continuously. The formation of optimum density of continuous ${\beta}$ precipitates with fine morphology which would act as pinning points for dislocation lines, might be responsible for the improvement of damping capacity.

Effect of Two Step Austenitizing Treatment Conditions on the Microstructural Characteristics of ADI (ADI의 조직특성에 미치는 2단 오스테나이트화 처리조건의 영향)

  • Choi, S.L.;Yun, K.H.;Moon, W.J.;Kang, C.Y.;Kim, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • The variation of the mechanical properties, microstructures and the formation of retained austenite with heat treatment conditions in austempered ductile cast iron has been investigated. In the case of austempered ductile cast iron below 25mm diameter, it has been found that a pearlite structure are not obtained under a super cooled condition at range of $0.05^{\circ}C/sec{\sim}10^{\circ}C/sec$, and the matrix is precipitated in graphite, bainite and retained austenite. After austempering treatment the retained austenite is increased with decreasing cooling rate. The elongation increases with decreasing super cooling rate, and the optimum result has been shown to be the elongation of 15.6% at super cooling rate of $0.05^{\circ}C/sec$. The optimum result has been shown to be the tensile strength-elongation balance of $1656kgf/mm^2.%$ and it is more than doubled to as the casting state and continuous cooling condition.

  • PDF