• Title/Summary/Keyword: continuous heat treatment

Search Result 157, Processing Time 0.024 seconds

A study on the improvement method of heat treatment condition for the long-term stability evaluation in the floor impact isolator (층간소음저감재 장기 내구성 평가를 위한 가열시험의 문제점 및 개선방안에 관한 연구)

  • Park, Youn-Joon;Lee, Chan-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.238-243
    • /
    • 2011
  • This study compared Kd, loss factor and thickness of floor impact isolator by loading/unloading heat treatment with results by continuous loading treatment and checked problem and improvement method of heat treatment condition for the long-term stability evaluation of the floor impact isolation. As the results, it is required the change of heat treatment condition unloading now to loading as actual weigh on the floor impact isolator.

  • PDF

Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy (Mg-Al-Zn 합금에서 불연속 석출물의 층상 구조와 경도에 미치는 냉각 속도의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.

Analysis of Heat Treatment Process for Large Forgings Considering Phase Transformation (대형 단조품 담금질 과정의 조직 및 응력분포 해석)

  • 이정호;이부윤;전제영;이명렬;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.964-968
    • /
    • 1996
  • The demands of size and quality of large steel shaft forgings for ship building, power plant, steel plant, etc. are rapidly increasing, and some of these productions are manufactured from ingot weighing more than 300 tons. For use as rotating components. shafts require toughness, strength and homogeneity, and therefore are produced through a variety of heat treatments. According to the increase of ingot size, micro- and macrosegregation and also mass effect of the product increase. Thus, special care should be paid to the heat treatment of such large shaft forgings. In this paper, the heat treatment of large shaft forgings such as rotor and back-up roll is calculated using the commercial finite element code SYSWELD. Calculated distributions of temperature and phase are compared with experimental data. The continuous cooling transformation diagram, thermal and mechanical properites of each phase are used. The phase proportion, hardness and residual stress during water quenching are discussed.

  • PDF

Change in Microstructure and Texture during Continuous-Annealing in Dual-Phase Steels (복합조직강의 연속어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • The variation in microstructure and texture during continuous annealing was examined in a series of 1.6% Mn-0.1% Cr-0.3% Mo-0.005% B steels with carbon contents in the range of 0.010 to 0.030%. It was found that microstructure of hot band consisted of ferrite and pearlite as a consequence of high coiling temperature, and eutectoid carbon content was between 0.011% and 0.016%. Martensite ranged in volume fraction from 1.5% to 4.0% when annealed at $820{\circ}C$ according to the typical continuous annealing cycle. The critical martensite content for the continuous yielding was about 4% from stress-strain curves. The continuous yielding was obtained in the 0.030% carbon steel and 0.010% to 0.020% carbon steels revealed some yield point elongation ranging from 0.8% to 2.2% in as-annealed conditions. Higher tensile strength in the higher carbon steel is due to both increase in the martensite volume fraction and ferrite grain refinement. Decreasing the carbon content to 0.01% strengthened the intensities of ${\gamma}$-fiber textures, resulting in the increase in the $r_m$ value, which was caused by the lower volume fraction of martensite. The higher carbon steels showed the lower $r_m$ value of about 1.0.

A Mechanism Design of the Automatic Charging Machine for the Industrial Furnace of Continuous Type (연속형 노용 자동장입기의 기구설계)

  • 김병오;강대기;전정철;이우진;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.406-410
    • /
    • 1993
  • In the industria; heat treatment fields, some parts of the continous funcae have been automated, but there are not enough interests and achievements for sutomatic charging machine. The automatic charging machine is set up to the industrial mesh belt type continuous furnace which continuously orintermittently charge and extract industrial units for the heat treatments.

  • PDF

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste (음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과)

  • Lee, Chae-Young;Lee, Se-Wook;Hwang, Sun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.

A Characteristic of microstructural evolution, microhardness and tensile properties in CrMoV rotor steel weldment experienced by the cyclic thermal aging heat treatment (CrMoV강 용접부의 주기적 열시효처리에 따른 미세조직, 미세경도 및 인장강도 특성)

  • Kim, G.S.;Koh, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.303-312
    • /
    • 1999
  • An investigation of the CrMoV rotor steel weldment which experienced by cyclic thermal aging heat treatment and as-received condition was performed. This evaluation was carried out to confirm whether this type of weldment is appropriate for the service environment in terms of microstructural examinations, microhardness measurements and tensile tests. The cyclic thermal aging heat treatment, containing continuous heating and cooling thermal cycle was programmed to simulate the real rotor service condition. The heat treatment was performed for 40 cycles(5920hrs). The results indicated that the weldment was composed of 4 different regions such as heat affected zone of the base metal, butter weld(initial weld), full thickness weld(final weld) and the base metal. The double welding process was applied to eliminate the susceptibility of reheat cracking at heat affected zone of base metal. The grain refinement at the HAZ due to the welding process could reduce the possibility of cracking susceptibility, but its tensile properties was appeared to be low due to the weld metal in as-received condition. The benefit effect, grain refinement was extended with carbides coarsening during the cyclic thermal aging heat treatment. However the poor mechanical properties of the weldment was more degraded as undergoing the heat treatment.

  • PDF

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Continuous Cooling After Solution Treatment in Mg-Al Alloys (Mg-Al 합금에서 용체화처리 후 연속 냉각으로 생성된 불연속 석출물 의 미세조직과 경도에 미치는 Al 함량의 영향)

  • Joong-Hwan, Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • The present study aims to investigate the effect of Al content on microstructure and hardness of discontinuous precipitates (DPs) formed by continuous cooling (CC) in Mg-8%Al and Mg-9.5%Al alloys. The DPs had a wide range of (α+β) interlamellar spacings, which may well be attributed to the different transformation temperatures during CC. The higher Al content gave rise to the higher level of interlamellar spacings of the DPs, and thicker and larger amount of β phase layer in the DPs. It is noticeable that the Mg-9.5%Al alloy exhibited higher hardness of the DPs than the Mg-8%Al alloy, but the ratio of increase in hardness of the DPs compared to that of the as-cast state was similar regardless of the Al content. The reason was discussed based on the differences in microstructures of the DPs for the Mg-8%Al and Mg-9.5%Al alloys.

Effects of Zn Content on Microstructure and Hardness of Discontinuous Precipitates Formed in Mg-8%Al-X%Zn Alloys Subjected to Continuous Cooling after Solution Treatment (용체화처리 후 연속 냉각한 Mg-8%Al-X%Zn 합금에서 생성된 불연속 석출물의 미세조직과 경도에 미치는 Zn 함량의 영향)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.223-229
    • /
    • 2023
  • This work was intended to investigate the effects of Zn content on microstructure and hardness of discontinuous precipitates (DPs) produced by continuous cooling (CC) in Mg-8%Al-X%Zn alloys with 0%, 0.5% and 1% of Zn contents (wt%). The DPs in the alloys possessed a wide range of (α+β) interlamellar spacings, which is attributed to the different transformation temperatures during CC. The higher Zn content resulted in the lower level of interlamellar spacings of the DPs, along with thinner and larger volume fraction of β phase layer in the DPs. It is noted that the DPs in the alloy with higher Zn content exhibited higher hardness, and that the ratio of increase in hardness of the DPs to that of the as-cast state was also increased with increasing Zn content. The reason was discussed on the basis of microstructural differences of the DPs in the Mg-8%Al-X%Zn alloys.