• Title/Summary/Keyword: continuous filament fiber

Search Result 21, Processing Time 0.026 seconds

Workers' Exposure to Airborne Fibers in the Man-made Mineral Fibers Producing and Using Industries (인조광물섬유 제품 제조 및 취급 근로자의 공기중 섬유 노출 평가 및 노동부 노출기준 고찰)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 2005
  • In this study, occupational exposures to man-made mineral fibers (MMMFs) including glass wool, rock wool, and continuous glass filament fibers were determined and evaluated on the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). A total of 171 personal samples collected from 4 glass wool fiber, 2 rock wool fibers, 4 continuous filament glass fiber products manufacturing and a glass fiber and rock wool insulations using industries, and determined respirable fibers concentrations using the National Institute for Occupational Safety and Health (NIOSH) Method 7400, "B counting rule. The fiber concentrations of samples from workers installing thermal insulations in a MMMF using industry showed the highest value: geometric mean (GM) = 0.73 f/cc and maximum = 2.9 f/cc, 70% of them were above the TLV, 1 f/cc. Workers' exposure level (GM= 0.032 f/cc) in the rock wool manufacturing industries was significantly higher than those of glass wool (GM=0.012 f/cc) and continuous filament glass fibers (GM=0.010 f/cc) manufacturing industries (p<0.01). No samples were more than the TLV in the MMMF manufacturing industries. There was a significant difference among companies in airborne fiber levels.

Preparation and Characterization of Inorganic Continuous Fibers from Korean Basalt and Quartz Diorite Porphyry (국내산 현무암과 맥반석으로부터 무기질 연속섬유 제조와 그 특성)

  • Kim, jae-Keun;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il;Jin, Yong-Jun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • This paper summarizes the processing inorganic continuous fibers from Korean minerals. Continuous filament fibers have been produced from two rocks, basalt and quartz diorite porphyry(QDP), by melting method. The essence of the method is that the vitrified materials was placed into the bushing, platinum/rhodium alloy crucible with a nozzle, and heated electrically to a temperature which allowed fiber spinning. Vitrified basalt without additive was suitable for producing continuous filament fiber. However doping quartz diorite porphyry with boric oxide yielded a material which could be pulled continuously.

Studies on Melt Spinning of PET Hollow Fibers

  • O Tae-Hwan;Lee Mu-Seok;Kim Sang-Yong;Sim Hyeon-Ju
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.111-115
    • /
    • 1998
  • Fiber spinning is a continuous deformation process by which material is converted into a fiber. The melt spinning process was analyzed mainly by employing an asymptotic method of the so-called thin filament equations which formulates dynamics of spinning process by averaging over the cross-section of filament the set of fundamental equations. The method gives the approximate results for commonly used circular fiber spinning.(omitted)

  • PDF

Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning (현무암의 용융특성과 연속섬유 방사 연구)

  • Park, Hye-Jung;Park, Sun-Min;Lee, Jae-Won;Roh, Gwang-Chul;Kim, Jae-Keun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Basaltic fiber was prepared by continuous spinning process from Jeju Pyosun raw basalt materials. First, for confirming the melting characterization of basalt, basalt raw material put into Pt crucible and melted up to $1550^{\circ}C$ then quenched by dropping it into water. After quenching, the optimum fiber spinning conditions were investigated by measurement and analysis of XRD, TMA, high temperature viscosity, high temperature conductivity and high temperature microscope. The optimum spinning temperature and viscosity for preparation of continuous filament fiber were $1264^{\circ}C$ and $10^{2.8}$ poise at $1264^{\circ}C$, respectively. Properties of prepared spinning fiber were confirmed by tensile strength, FE-SEM, heat resisting test and others. The tensile strength of fiber prepared by spinning conditions of the bushing temperature $1240^{\circ}C$ and winder speed 4600rpm was 3660MPa.

A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process (Filament winding에 의해 제조된 복합재료 NOL RING시험편의 최적 인장강도 평가법에 관한 연구)

  • 권순철;임철문;배창원;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.203-207
    • /
    • 2000
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And now well established as a versatile method for storage tanks and pipe for the chemical and other industries . In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture , The results obtained from experiments were compared with the theoretical values obtained by the rule of mixtures. And the purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures .The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than of a ring specimen tested by the split disk test because the stress concentration in edges of a split disk test fixture is more severe than that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF

Size Distribution of Airborne Fibers in Man-made Mineral Fiber Industries (인조광물섬유 산업에서 발생된 공기중 섬유의 크기 분포)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Penetration and health effect of fibers was related with their diameters and length. The purpose of this study is to characterize and compare the diameter and length of airborne man-made mineral fibers(MMMF) or synthetic vitreous fibers in the related industries. The average fiber length of the continuous filament glass, rock wool, refractory ceramic, and glass wool fibers production industries approximately 27, 28, 35, $50-105{\mu}m$. Airborne glass fibers were longest in all the type of MMMFs. The average diameters of airborne fibers generated from refractory ceramic, rock wool, glass wool, continuous filament glass fibers production industries were approximately 1.0, 1.6, 1.5-4 and $10{\mu}m$, respectively. The percentages of respirable fibers(<$3{\mu}m$) were 94% for RCFs, 73% for rock wool fibers, 61.0% for glass fibers, and 1.6% for filament glass fibers. The length of glass fibers were the longest in all types of fibers, and length of the others were similar. The refractory ceramic fibers were smallest in diameters and highest in fraction of respirable fibers.

A Study on the Evaluation Method for optimal Tensile NOL Ring Composite Specimen Manufactured by Filament Winding Process-to manufacture and elvaluate the composite turbine blade of wind generator system- (필라멘트 와인딩 공법으로 제조된 복합재료 NOL Ring 시험편의 최적 인장강도의 평가법에 관한 연구 -풍력발전용 복합재료 터빈블레이드 제조 및 평가를 목적으로-)

  • 배창원;권순철;임철문;엄수현;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Filament winding process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And now it is well established as a versatile method for storage tanks and pipe for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture. The results obtained from experiments were compared with the theoretical values obtained by the rule of mixture. And the purpose of this paper is to suggest an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimens tested by the dress disk test showed better agreement with the theoretical values than of a ring specimen tested by the split disk test because the stress concentration in edges of s split disk test fixture is more severe than the that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

A Study on the Evaluation Method for Tensile Ring Specimen Manufactured by Filament Winding Process (필라멘트 와인딩 공법으로 제조된 링 시험편의 인장강도 평가법에 관한 연구)

  • 배창원;권순철;임철문;엄수현;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.15-20
    • /
    • 2000
  • Filament winding process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And it is now well established as a versatile method for storage tanks and pipe for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture. The results obtained from experiments were compared with the theoretical values obtained by the rule of mixtures in composites . And the purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than that of a ring specimen tested by the split disk test because the stress concentration in edges of a split disk test fixture is more severe than that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

The Effect of Coagulant and Molecular Weight on the Wet Spinnability of Regenerated Silk Fibroin solution

  • Yoo, Young-Jin;Kim, Ung-Jin;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • The regenerated silk fibroin with various molecular weights (MW) was prepared by different dissolution condition and the effect of coagulant on the wet spinnability of the various MW silk fibroin solutions dissolved in formic acid was investigated by the observation of wet spun filament in coagulant and the measurement of maximum draw ratio. The observation on the wet spun filament in coagulation bath revealed that good fibers without bead were formed in a high MW and a very high MW silk fibroin samples. In contrast, beads were observed in the silk fibroin sample with medium MW. The maximum draw ratio of wet spun silk fibroin filament decreased with MW reduction. The decrease of maximum draw ratio in isopropanol, acetone, DMF and THF was remarkably higher than that in methanol and ethanol, indicating that the coagulant type strongly influenced the wet spinnability. The two simple evaluation methods used in this study showed complementary information for wet spinnability: (a) The observation of filament in coagulant was effective to check a continuous fiber formation and a bead formation, and (b) the maximum draw ratio measurement was useful to examine the post drawing ability related to molecular orientation.