• Title/Summary/Keyword: continuous dialyzer

Search Result 4, Processing Time 0.017 seconds

Modeling of continuous diffusion dialysis of aqueous solutions of sulphuric acid and nickel sulphate

  • Bendova, Helena;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.267-279
    • /
    • 2011
  • At steady state, the simultaneous transport of sulphuric acid and nickel sulphate through an anion-exchange membrane Neosepta-AFN (Astom Corporation, Tokyo, Japan) was investigated in a two-compartment counter-current dialyzer with single passes. The transport was quantified by the recovery yield of acid, rejection of salt and four phenomenological coefficients, which were correlated with the acid and salt concentrations in the feed. The phenomenological coefficients were determined by the numerical integration of the basic differential equations describing the concentration profiles of the components in the dialyzer. This integration was combined with an optimizing procedure. The experiments proved that the acid recovery yield is in the limits from 63 to 91 %, while salt rejection is in the limits from 79 to 97 % in the dependence on the volumetric liquid flow rate and composition of the feed.

Continuous dialysis of selected salts of sulphuric acid

  • Bendova, Helena;Snejdrla, Pavel;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • The transport of selected salts of sulphuric acid (cobalt, copper, iron(II), manganese, nickel and zinc sulphate) through an anion-exchange membrane Neosepta-AFN was investigated in a counter-current continuous dialyzer at various salt concentrations and volumetric liquid flow rates. The basic transport characteristics - the rejection coefficient of salt and the permeability of the membrane - were calculated from measurements at steady state. The salt concentration in model mixtures was changed in the limits from 0.1 to 1.0 kmol $m^{-3}$ and the volumetric liquid flow rate of the inlet streams was in the limits from $8{\times}10^{-9}$ to $24{\times}10^{-9}m^3\;s^{-1}$. Under the experimental conditions given, the rejection coefficient of salts tested was in the range from 65% to 94%. The lowest values were obtained for iron(II) sulphate, while the highest for copper sulphate. The maximum rejection of salt was reached at the highest volumetric liquid flow rate and the highest salt concentration in the feed. The permeability ($P_A$) of the Neosepta-AFN membrane for the individual salts was in the range from $0.49{\times}10^{-7}m\;s^{-1}$ to $1.8{\times}10^{-7}m\;s^{-1}$ and it can be described by the following series: $P_{FeSO_4}$ < $P_{NiSO_4}$ < $P_{ZnSO_4}$ < $P_{CoSO_4}$ < $P_{MnSO_4}$ < $P_{CuSO_4}$. The permeability of the membrane was strongly affected by the salt concentration in the feed - it decreased with an increasing salt concentration.

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (Ⅳ). Continuous-Automated Determination of Sulfide Ion Using Tubular PVC Membrane Type pH Electrode (용해기체 분석용 기체감응막 이온선택성 전극 (제 4 보) 관형 PVC막 pH전극을 이용한 황화이온의 연속 · 자동화 정량)

  • Lee Heung Lark;Bae Zun Ung;Oh Sang-Hyub
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.638-643
    • /
    • 1992
  • The analytical response properties of two types of continuous flow-through electrode system as fulfide ion detectors are examined and directly compared their reponse characteristics under the optimal conditions. In both detection systems, observed peak potentials are logarithmically related to the sulfide ion concentration and at least twenty samples per hour can be determined. In the pH electrode method, the pH of the flowing recipient stream leaving the dialyzer was monitored. The designed system involves the use of continuous flow gas dialyzer in conjunction with the tubular polymer membrane electrode. In this method, optimal experimental conditions are recipient of mixture of $5.0 {\times} 10^{-5} M NaOH + 5.0 {\times} 10^{-3} M$ NaCl and diluent of 0.10 M $H_2SO_4$, and all flow rates of recipient stream, diluent stream, and sample are 1.0 ml/min. In the sulfide ion electrode method, a commercially available sulfide ion-selective electrode was used to detect sulfide ion in the flow-through cell. The optimal flow rates of sulfide anti-oxidant buffer (3.5 g ascorbic acid and 7.6 g $Na_2EDTA$ dissolved in 1.0 M NaOH solution 1 l) and sample were 1.4 ml/min and 1.0 ml/min, respectively.

  • PDF

Continuous Automated Determination of Urea Using a New Enzyme Reactor (새로운 효소반응기를 이용한 요소의 연속·자동화 정량)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.393-404
    • /
    • 1992
  • The response properties of continuous automated system using an enzyme reactor for determination of urea were investigated. The enzyme reactor was constructed to packed-bed form which filled with nylon-6 beads (42∼48 mesh), which immobilized urease with glutaraldehyde, in teflon tube (2 mm I.D., 20 cm length). The system was composed of the enzyme reactor, gas dialyzer, and tublar PVC-nonactin membrane ammonium ion-selective electrode as an indicator electrode in serial order. The response characteristics of this system were as follows. That is, the concentration range of linear response, slope of linear response, detection limit, and conversion percentage were $5.5{\times}10^{-6}$$2.4{\times}10^{-3}M$, 57.8 mV/decade, $1.5{\times}10^{-6}$, and 80.8%, respectively. The optimum buffer and life time of urease reactor were 0.01M Tris-HCl buffer solution (pH 7.0∼7.8) and 0.01M phosphate buffer solution (pH 6.9∼7.5) and about 150 days, respectively. And the urease reactor had no interferences of the other physiological materials.

  • PDF