• Title/Summary/Keyword: continuous deposition

Search Result 188, Processing Time 0.025 seconds

A study on the deposition characteristics of the hi thin films deposited ionized cluster beam deposition (ICBD법으로 증착된 Al 박막의 증착특성 연구)

  • 안성덕;김동원;천성순;강상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.207-215
    • /
    • 1997
  • Aluminum (Al) thin films were deposited on the Si(100) and TiN(60 nm)/Si (100) substrate by the ionized cluster beam deposition (ICBD) method. The characteristics of thin films were examined by the $\alpha$-step, four-point-probe, Scanning Electron Spectroscopy (SEM), Auger Electron Spectroscopy (AES). The growth rate of the Al thin film increased and the resistivity decreased as the crucible temperature increased. At the crucible temperature $1800^{\circ}C$, the microstructure of Al thin film deposited was smooth and continuous the resistivity decreased as the acceleration voltage increased. Also, the minimum resistivity in Si(100) substrate and TiN(60 nm)/Si(100) substrate were 3.4 $\mu \Omega \textrm {cm}$, 3.6 $\mu \Omega \textrm {cm}$ at the acceleration voltage 4 kV and 2 kV respectively. From the AES spectrumt 14 wasn't detected any impurities In the Al thin film. Therefore the resistivity of Al thin film was affected by the microstructure of film.

  • PDF

Development of the Organic Solar Cell Technology using Printed Electronics (인쇄전자 기술을 이용한 유기 태양전지 기술 개발)

  • Kim, Jungsu;Yu, Jongsu;Yoon, Sungman;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Analysis of Soil Erosion Vulnerability at Alpine Agricultural Fields of HongCheon County (홍천군 산지농업지대의 토양침식취약성 분석)

  • Kim, Ki-Sung;Heo, Sung-Gu;Jung, Yeoug-Sang;Kim, Ji-Man;Lim, Kyoung-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.2 s.27
    • /
    • pp.51-57
    • /
    • 2005
  • It has been well known that soil erosion and sediments from alpine agricultural fields are causing severe water quality and turbidity problems in receiving waters. Also these result in the loss of money because farmers have to buy top soils to provide enough root zone in the following year. Thus, there have been needs to reduce soil erosion and sediment discharge into the stream networks. To accomplish this end, an effective erosion control plans should be developed based on scientific research, not by rule of thumb. The Universal Soil Loss Equation (USLE) has been widely used to estimate the soil erosion in many countries over the years. In this study, the USLE was used to estimate soil erosion potential under different cropping scenarios in HongCheon County, Kangwon. The soil erosion potential for continuous corn cropping was the highest compared with those from continuous potato find average cropping scenarios. This indicates the soil erosion plans need to be established considering cropping system in the field. The Unit Stream Power Erosion-Deposition (USPED) was applied for HongCheon County to estimate soil erosion and deposition areas. The USPED estimated results can be used to complement USLE results in developing effective erosion control plans.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

A Study on Reusing of Electroless Co-Cu-P Waste Solution (무전해 Co-Cu-P 폐 도금액의 재사용에 관한 연구)

  • Bai Young-Han;Oh Lee-Sik
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.34-40
    • /
    • 2005
  • Reusing of electroless Co-Cu-P waste solution was investigated in the respect of plating time, plating rate, solution composition and deposit. Plating time of cobalt-catalytic surface took longer than that of zincated-catalytic surface. It was possible to reuse the waste solution by mixing $50\%$ fresh solution at batch type. Plating time of initial solution at continuous type took longer 7.5 times over than that of batch type. Plating time of $50\%$ waste solution additive at continuous type took longer 2.5 times over than that of batch type. Component change of cobalt-topper for electroless deposition was greatly affected by deposit inferiority and rapid decrease in plating rate.

Boron Nitride Films Grown by Low Energy Ion Beam Assisted Deposition

  • Park, Young-Joon;Baik, Young-Joon;Lee, Jeong-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • Boron nitride films were synthesized with $N_2$ion flux of low energy, up to 100 eV, at different substrate temperatures of no heating, 200, 400, 500, and $800^{\circ}C$, respectively. Boron was supplied by e-beam evaporation at the rate of $1.5\AA$/sec. For all the conditions, hexagonal BN (h-BN) phase was mainly synthesized and high resolution transmission electron microscopy (HRTEM) showed that (002) planes of h-BN phase were aligned vertical to the Si substrate. The maximum alignment occurred around $400^{\circ}C$. In addition to major h-BN phase, transmission electron diffraction (TED) rings identified the formation of cubic BN (c-BN) phase. But HRTEM showed no distinct and continuous c-BN layer. These results suggest that c-BN phase may form in a scattered form even when h-BN phase is mainly synthesized under small momentum transfer by bombarding ions, which are not reconciled with the macro compressive stress model for the c-BN formation.

  • PDF

The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores

  • Park, Sang-Eun;Park, Min-Yim;Han, Po-Keun;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1341-1345
    • /
    • 2006
  • An electrostatic interaction is responsible for the attachment of gold seeds of 1-3 nm onto APTMS (3-aminopropyl trimethoxysilane)-coated silica cores in the formation of gold clusters. A surface plasmon resonance and morphology of gold clusters were significantly affected by the pH of gold colloids prepared by THPC reducing agent. Gold colloids of alkaline pH induced the heterogeneous deposition of gold seeds onto the silica nanoparticles, probably due to the continuous reduction of residual gold ions during the attachment process. Gold colloids of acidic pH induced the monodisperse deposition of gold seeds, consequently leading to the formation of smooth gold layer on the silica nanoparticles surface. The gold nanoshells (core radius = 80 nm) prepared by gold colloids of pH 3.1 exhibited the more red-shift and relatively stronger intensity of plasmon absorption bands, compared with gold nanoshells prepared by alkaline gold colloids of pH 9.7.

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of β-SiC (액상소결 시의 β-SiC의 입자성장 방지)

  • Gil, Gun-Young;Noviyanto, Alfian;Han, Young-Hwan;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.485-490
    • /
    • 2010
  • In our previous studies, continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by two different slurry infiltration methods: vacuum infiltration and electrophoretic deposition (EPD). 12 wt% of $Al_2O_3-Y_2O_3$-MgO with respect to SiC powder was used as additives for liquid-phase assisted sintering. After hot pressing at $1750^{\circ}C$ under 20 MPa for 2 h in Ar atmosphere, a high composite density could be achieved for both cases, whereas the problems such as large grain size and non-uniform distribution of liquid phase were observed, which was resulted in the relatively poor mechanical properties of composites. Therefore, efforts have been made to reduce the grain growth during the sintering, including the optimization for hot pressing condition and utilization of spark plasma sintering using a SiC monolith. Based on the results, spark plasma sintering was found to be effective method in decreasing the amount of sintering additive, time and grain growth, which will be explained in comparison to the results of hot pressing in this paper.

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF