• Title/Summary/Keyword: continuous convergence

Search Result 1,074, Processing Time 0.027 seconds

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California (YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로)

  • Park, Sangchul;Park, Yeongbin;Jang, Soyeong;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1463-1478
    • /
    • 2022
  • Maritime transport accounts for 99.7% of the exports and imports of the Republic of Korea; therefore, developing a vessel monitoring system for efficient operation is of significant interest. Several studies have focused on tracking and monitoring vessel movements based on automatic identification system (AIS) data; however, ships without AIS have limited monitoring and tracking ability. High-resolution optical satellite images can provide the missing layer of information in AIS-based monitoring systems because they can identify non-AIS vessels and small ships over a wide range. Therefore, it is necessary to investigate vessel monitoring and small vessel classification systems using high-resolution optical satellite images. This study examined the possibility of developing ship monitoring systems using Compact Advanced Satellite 500-1 (CAS500-1) satellite images by first training a deep learning model using satellite image data and then performing detection in other images. To determine the effectiveness of the proposed method, the learning data was acquired from ships in the Yellow Sea and its major ports, and the detection model was established using the You Only Look Once (YOLO) algorithm. The ship detection performance was evaluated for a domestic and an international port. The results obtained using the detection model in ships in the anchorage and berth areas were compared with the ship classification information obtained using AIS, and an accuracy of 85.5% and 70% was achieved using domestic and international classification models, respectively. The results indicate that high-resolution satellite images can be used in mooring ships for vessel monitoring. The developed approach can potentially be used in vessel tracking and monitoring systems at major ports around the world if the accuracy of the detection model is improved through continuous learning data construction.

Case Analysis on Platform Business Models for IT Service Planning (IT서비스 기획을 위한 플랫폼 비즈니스 모델 사례 분석연구)

  • Kim, Hyun Ji;Cha, yun so;Kim, Kyung Hoon
    • Korea Science and Art Forum
    • /
    • v.25
    • /
    • pp.103-118
    • /
    • 2016
  • Due to the rapid development of ICT, corporate business models quickly changed and because of the radical growth of IT technology, sequential or gradual survival has become difficult. Internet-based new businesses such as IT service companies are seeking for new convergence business models that have not existed before to create business models that are more competitive, but the economic efficiency of business models that were successful in the past is wearing off. Yet, as reaching the critical point where the platform value becomes extremely high for platforms via the Internet is happening at a much higher speed than before, platform-ization has become a very important condition for rapid business expansion for all kinds of businesses. This study analyzes the necessity of establishing platform business models in IT service planning and identifies their characteristics through case analyses of platform business models. The results derived features First, there is a need to ensure sufficient buyers and sellers, and second, platform business model should provide customers with distinctive value of the only platforms are generating. third, the common interests between platform-driven company and a partner, participants Should be existing. Fourthly, by expanding base of participants and upgrades, expansion of adjacent areas we must have a continuous scalability and evolution must be sustainable. While it is expected that the identified characteristics will cause tremendous impacts to the establishment of platform business models and to the graphing of service planning, we also look forward to this study serving as the starting point for the establishment of theories of profit models for platform businesses, which were not mentioned in the study, so that planners responsible for platform-based IT service planning will spend less time and draw bigger schemes in building planning drafts.

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.