• Title/Summary/Keyword: continuous band

Search Result 286, Processing Time 0.027 seconds

Design of a Planar Slotted Waveguide Array Antenna for X-band Radar Applications

  • Bhatti, Rashid Ahmad;Park, Byeong-Yong;Im, Yun-Taek;Park, Seong-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • A planar slotted waveguide array antenna has been designed at 9.37 GHz for X-band radar applications. The antenna consists of multiple branchline waveguides with broadwall radiating shunt slots and a main waveguide to feed the branch waveguides through a series of inclined coupling slots. The antenna feed point is located at the center of the main waveguide. Element weights in the array have been calculated bysampling a continuous circular Taylor aperture distribution at the 25 dB sidelobe level in both the E and Hplanes. A commercially available electromagnetic (EM) simulation tool has been used to characterize the individual isolated slot and that data hassubsequently been used to design the planar array. The array is finally analyzed in a CST Microwave studio and the measured and simulated results have been found to be in good agreement.

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

Electrical Consideration in OPGW Live-Line Installation (활선 상태에서의 OPGW 가선 시 전기적인 현상 고찰)

  • Baek, Ju-Heum;Kim, Jung-Nyun;Jeon, Seung-Ik;Kim, Byung-Soo;Lee, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.127-129
    • /
    • 2005
  • OPGW(Optical Ground Wire) whose demand is increasing worldwide have composite function as optical communication and grounding for preventing transmission line from lightning. While continuous efforts have been made to increase the transmission capacity and speed, the working method to replace the existing ground wire with OPGW under live-line condition is coming to force newly as installation aspects. Particularly, this requirement became more serious in developing country that the electric power supply is not sufficient and power outage is impossible for supply and dead of electric power LS cable Ltd. has developed the new installation method in full live-line condition to solve the confronted problem and to meet the market demand. In this paper, Electric Problems in live-line installation is considered to predict dry-band arcing. This can be used by Makers to predict dry-band arcing in insulating ropes installed on earth wire of power transmission system.

  • PDF

A Preliminary Implementation Study of TDMA-based Positioning System Utilizing USRP and GNU Radio

  • Yoo, Won Jae;Choi, Kwang Ho;Lim, JoonHoo;Kim, La Woo;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Positioning signals transmitted by Global Positioning System (GPS) satellites located at approximately 20,000 km height is very weak. For the reason, GPS signals are vulnerable to intentional jamming and unintentional disturbance. Recently, the number of jamming has been increased significantly all over the world. For the applications where continuous and reliable positioning is required when GPS jammers are activated, other positioning systems are strongly required. In this work, a set of Time Division Multiple Access (TDMA)-based transmitters and receivers utilizing Universal Software Radio Peripheral (USRP) and GNU Radio are designed and implemented. To eliminate the undesirable effects of GPS jamming, a frequency band which does not overlap L band is utilized. To demonstrate the accuracy of the proposed method, an experiment was performed.

STAR FORMATION HISTORY AND DUST PRODUCTION: NGC147 AND NGC185

  • GOLSHAN, ROYA HAMEDANI;JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.169-171
    • /
    • 2015
  • NGC147 and NGC185, paired satellites of the Andromeda galaxy, possess the same order of mass and analogous structures, but they show different star formation and different amounts of interstellar gas and dust. Therefore, we present the first reconstruction of the star formation history of NGC147 and NGC185. Asymptotic Giant Branch stars are highly evolved stars that are brightest in K-band. This maximum K-band magnitude is related to the birth mass of stars. As a result, we have found a 9.9 Gyr old single star formation epoch for NGC185 followed by relatively continuous star formation. NGC147, however, has passed through two star formation episodes; one is as old as ~6 Gyr and the other is as recent as ~850 Myr. Asymptotic Giant Branch stars are also important dust factories; by fitting Spectral Energy Distributions to observed near and mid infrared data for each star, we were able to measure the dust production rates of individual stars; on order of $10^{-5}M_{\odot}yr^{-1}$. Hence, we estimate the total mass entering the interstellar medium to be $1.06{\times}10^{-4}M_{\odot}yr^{-1}$ and $2.89{\times}10^{-4}M_{\odot}yr^{-1}$ for NGC147 and NGC185.

A Continuously Frequency Tunable Electromagnetic Wave Absorber Using Varactor Diodes and Multiple Slits (버랙터와 다중 슬릿들을 결합한 광대역 주파수 가변 흡수체)

  • Cho, Soo-Bean;Jo, Eon-Seok;Kim, Dongho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.399-402
    • /
    • 2016
  • We propose a thin electromagnetic wave absorber using varactor diodes combined with intentionally introduced multiple slits, which enables continuous sweep of an absorption frequency band throughout relatively wide frequencies. The absorption frequency range of conventional electrically tunable absorbers has been restricted by high capacitance of varactor diodes. In order to overcome the problem, we introduce parasitic capacitance and connect them with varactors in series, which reduces the total capacitance dramatically. As a result, we can raise the operating absorption frequency up to the X-band region. Moreover, we can also control the operating frequencies by modifying the number of slits with little change in an entire frequency sweep range. Good agreement between simulated and measured results show the validity of our proposal.

Study on Analysis of Output Polarization of Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광상이 고리 구조 기반 Lyot형 고차 광섬유 빗살 필터의 출력 편광 분석에 관한 연구)

  • Jo, Songhyun;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we investigated the output polarization of a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure. It was found that the output state of polarization (SOP) of the filter made a wavelength-dependent evolution, and the spectral periods of the output SOP variation in flat-top and lossy flat-top band modes were the channel separation of the filter and its half, respectively. For a certain input SOP, the filter could pass or reject specific spectral sections by adding and controlling an output analyzer. In particular, it was theoretically anticipated that the filter with the output polarizer could provide the fine continuous tuning of its pass band center in a wavelength range corresponding to the ${\pm}9.5%$ of channel spacing(0.8nm) when the input SOP was properly adjusted. It is expected that this tuning function can be effectively applied to suppress unwanted spectral portions in modulated optical signals.

High Pressure Synthesis and Physical Properties of the Solid Solution, $SrLaAl_{1-x}Ni_xO_4(0

  • 변송호
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1084-1088
    • /
    • 1995
  • A complete solid solution (SrLaAl1-xNixO4) between insulating SrLaAlO4 and metallic SrLaNi(Ⅲ)O4 oxides were prepared under high oxygen pressure (1.5 kbar, 800 ℃). They have tetragonal K2NiF4-type structure in all the solid solution range. Compared with lattice parameters of the same solid solution prepared under normal condition (1 bar, 1200 ℃), large decrease in the c-parameter was induced by high pressure treatment while no noticeable variation of the a-parameter was observed. Although marked changes of structural parameters, magnetic susceptibilities, and electron paramagnetic resonance spectra were consistently occurred before and after x=0.5, overall behaviors were essentially the same with those of solid solution prepared under normal condition. Such a phenomenon is explained by assuming the formation of partially filled narrow σ*x2-y2 band for x>0.5. Lattice contraction along the c-axis by high pressure treatment seems not to broaden this band. Particularly, the continuous absorption characteristic of a high free carrier concentration for x>0.5 and the absence of Ni-O in-plane stretching mode in the infrared absorption spectra supports this picture. However, the conductivities increasing with temperature for all solid solution suggest that some localization character, of probably Anderson type, remains for x>0.5.

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.