• Title/Summary/Keyword: continuous I-girder

Search Result 24, Processing Time 0.028 seconds

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

An Experimental Study on Flexural Behavior of Continuous Prestressed Steel I-Girder with Section Increasement at Internal Supports (지점부 단면형고 확대를 도입한 연속 프리스트레스트 Steel I-Girder의 휨거동에 관한 실험적 연구)

  • Kim, Kyung-Min;Hong, Sung-Nam;Yang, Dong-Suk;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.143-153
    • /
    • 2006
  • The paper presents the results of a study on improvement in flexure capacities of continuous prestressed steel I-girder with section increasement at internal supports. After tensioning, the field experiment on prestressed steel I-girder has been performed in the various aspects of prestressed I-girder introducing section increasement at internal supports, tendon profile.

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Monitoring of Long-Term Behavior of The Continuous IPC Girder Bridge (IPC거더 연속교의 장기거동 모니터링)

  • Lee, Hong-Woo;Ahn, Jeong-Seang;Kim, Kyoung-Won;Yu, Sang-Hui
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.349-352
    • /
    • 2008
  • IPC girder is more prestressed and has smaller sectional area than the conventional PSC-I type girder due to incremental prestressing along the construction process. The continuous IPC girder bridge may have problems in serviceability and stresses at internal supports because it is very flexible. In this paper, The long-term behavior of the continuous IPC girder bridge is studied through long-term structural analysis and monitoring the deflections. The long-term behavior is monitored right before the introduction of 2nd prestressing that is the construction process different from the conventional PSC-I type girder bridge. The total station of high-precision was used in measuring the deflections. According to the monitoring result so far, the continuous IPC girder bridges does not show remarkable long-term behavior like severe camber or deflection and the measured deflections are very similar to the results of long-term structural analysis.

  • PDF

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel (고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가)

  • Joo, Hyunsung;Moon, Jiho;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.513-523
    • /
    • 2010
  • For continuous I-girder bridges, a large negative bending moment is generated near pier region so that plastic hinge is first formed at this point. Then, the bending moment is redistributed when the I-girder has enough flexural ductility (or rotational capacity). However, for I-girder with high strength steel, it is known that the flexural ductility is considerably decreased by increasing the yield strength of material. Thus, it is necessary to conduct a study for guaranteeing proper flexural ductility of I-girder with high-strength steel. In this study, the evaluation of flexural ductility of negative moment region of I-girder with high strength steel where yield stress of steel is 680 MPa is presented based on the results of finite element analysis and experiment. From the results, it is found that the flexural ductility of the I-girder is significantly reduced due to the increase of elastic deformation and the decrease of plastic deformation ability of the material when the yield strength increases. In this study, the method to improve the flexural ductility of I-girder with high strength steel is proposed by an unequal installation of cross beam and an optimal position of cross beam is also suggested. Finally, the effects of the unequal installation of cross beam on the flexural ductility are discussed based on the experimental results.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.

Girder Section of Continuous Bridges Spliced by Partial Post-Tensioning (부분 포스트텐션닝 방법에 의해 연속화된 교량의 주형단면)

  • 이환우;곽효경;송영용
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, a new splicing method was applied to design the girder section of bridges with the span length of 25m, 30m, 35m, 40m and 45m. A U-type precast prestressed section was also determined for each bridge. Additionally, the sectional area, beam depth and Guyon's efficiency factor of the spliced U-type sections in each span were analyzed in comparison with the present I-type PSC bridges. As a result, in spite of an increase of 31%∼50% in the sectional areas compared with the I-type precast girders, the spliced U-type the beam depth of the spliced U-type girder was designed as 2,050 mm compared with the I-type precast girder of 2,600mm in a 40m span bridge. The sectional efficiency factors of the spliced U-type sections were analyzed as 0.76∼0.99. It shows that the spliced U-type sections ar of a superior structural efficiency in contrast to the average sectional efficiency factor of 0.66 value in the I-type girders.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.