• Title/Summary/Keyword: continuity coefficient

Search Result 77, Processing Time 0.02 seconds

NUMERICAL ANALYSIS OF WAVE CHARACTERISTICS AROUND PERMEABLE SUBMERGED BREAKWATER ON THE POROUS SEABED (침투 해저면 위의 투과잠제주변 파랑특성의 수치해석)

  • Kim, N.H.;Woo, S.M.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2014
  • In this study, wave characteristics coming with oblique incident angle to permeable trapezoidal submerged breakwater on the porous seabed are calculated by using boundary element method. This numerical analysis, based on the wave pressure function, is analyzing the continuity in the analytical region including fluid and structure. From the comparison of the reflection coefficients and damping coefficient, the results of this study are in good agreement with the existing results. The peak values of reflection coefficient obtained by permeable trapezoidal submerged breakwater on the porous seabed are smaller than those of permeable trapezoidal submerged breakwater on the non-porous seabed. The velocity vector in front of permeable trapezoidal submerged breakwater on the porous seabed is smaller than that in front of permeable trapezoidal submerged breakwater on the non-porous seabed with out the energy loss.

An Experimental Study on the Effect of Curing Condition and Moisture Content Ratio on the Carbonation and Air Permeability of Concrete (양생조건 및 함수율이 콘크리트의 중성화 및 투기성에 미치는 영향에 관한 실험적 연구)

  • 유재강;이강우;강석표;권영진;배기선;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.403-408
    • /
    • 2000
  • Hardened concrete contains pores of varying types and sizes, and therefore the transport of air through concrete can be considered. The rate of permeability will not only depend on the continuity of pores, but also on the moisture contents in concrete. In this paper, the effects of curing conditions and moisture content ratios on the carbonation and air permeability are investigated according to the accelerated carbonation test. The results are follows. 1) Compressive strength, carbonation velocity and air permeability are influenced by the moisture content and curing method. 2) The relationship between carbonation velocity coefficient and air permeability coefficient has been quite well established.

  • PDF

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

Calculation of Electric Polarizability of Square Patch for Calculating Reflection Coefficient of Metasurface (메타표면 반사계수 계산을 위한 정사각형 패치의 전기 분극률 계산)

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.594-598
    • /
    • 2018
  • The tangential electric polarizability of a electrically small square patch, which is commonly used in metasurfaces, is calculated using electric potential continuity. Since the potential at the patch surface is not uniform due to the equivalent electric dipole located at the center, there is a problem in that the polarizability is not uniquely defined. To obtain equivalent polarizability, the meshes in the analysis area are divided on the patch surface, and the equivalent polarizability is calculated by averaging the polarizabilities obtained at each point. The results of the proposed method, third-power series approximation, and experimental equations are compared and verified. Finally, the magnitude and phase of the reflection coefficient of patch metasurface calculated by generalized sheet transition conditions(GSTCs) are in good agreement with the HFSS simulation results.

Development of Evaluation Criteria for Forest Education Using the CIPP Model

  • Kim, Soyeon;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.163-172
    • /
    • 2020
  • The objective of this study was to develop evaluation criteria for forest education using the Context, Input, Process, and Product (CIPP) model. To this end, we designed a survey based on expert advice and content analysis of previous studies on the CIPP model and forest education. The survey was conducted on 393 forest education specialists, and Cronbach's α coefficient was set as 0.6 or higher to verify reliability and validity, and to determine reliability by factor. Eventually, 52 out of 57 evaluation items were extracted, and the evaluation indexes were selected through factor analysis as follows: four evaluation indexes for the context dimension, namely "Clarity of goal setting," "Developing conditions for education," "Meeting of requirements," and "Institutional drive"; three evaluation indexes for the input dimension, namely "Acquisition of education infrastructure," "Establishment of operational support," and "Adequacy of assigned manpower"; four evaluation indexes for the process dimension, which were "Adequacy of budget allocation," "Expertise of forest education instructors," "Diversity of programs," and "Public-private academic partnership"; and five evaluation indexes for the product dimension, namely "Effectiveness of perception change," "Influence over the society," "Continuity of improvement in evaluation," "Continuity of education," and "Verification of the effects of education."

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation (위상구성행렬식을 이용한 비압축성 순환망 형태의 유로망 해석에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Bum-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Topological matrix which reflects characteristics of network connectivity has been widely used in efficient solving for complicated flow network. Using topological matrix, one can easily define continuity at each node of flow network and make algorithm to automatically generate continuity equation of matrix form. In order to analyze flow network completely it is required to satisfy energy conservation in closed loops of flow network. Fundamental cycle retrieving algorithm based on graph theory automatically constructs energy conservation equation in closed loops. However, it is often accompanied by NP-complete problem. In addition, it always needs fundamental cycle retrieving procedure for every structural change of flow network. This paper proposes alternative mathematical method to analyze flow network without fundamental cycle retrieving algorithm. Consequently, the new mathematical method is expected to reduce solving time and prevent error occurrence by means of simplifying flow network analysis procedure.

Simulation of Moving Storm in a Watershed Using A Distributed Model -Model Development- (분포형 모델을 이용한 유역내 이동강우(MOVING STORM)의 유출해석(1) -모델의 개발-)

  • Choe, Gye-Won;Lee, Hui-Seong;An, Sang-Jin
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.101-110
    • /
    • 1992
  • In this paper for simulating spatially and temporally varied moving storm in a watershed a distributed model was developed. The model is conducted by two major flow simulations which overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation are used in the overland flow simulation. On the other hand, in the channel networks simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction are applied. The finite element formulations were used in the overland flow simulation and the implicit finite difference formulations were used in the channel network simulation. The finite element formulations for the overland flow are analyzed by the Gauss elimination method and the finite difference formulations for the channel network flow are analyzed by the double sweep method having advantages of computational speed and reduced computer storages. Several recurrent coefficient equations for channel network simulation are suggested in the paper.

  • PDF

Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System (CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리)

  • Choi, Tae-Woong;Kim, Soon-Hyub
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.79-85
    • /
    • 2013
  • Feature extraction of CASA system uses time continuity and channel similarity and makes correlogram of auditory elements for the use. In case of using feature extraction with cross correlation coefficient for channel similarity, it has much computational complexity in order to display correlation quantitatively. Therefore, this paper suggests feature extraction method using non-parametric correlation coefficient in order to reduce computational complexity when extracting the feature and tests to segregate target speech by CASA system. As a result of measuring SNR (Signal to Noise Ratio) for the performance evaluation of target speech segregation, the proposed method shows a slight improvement of 0.14 dB on average over the conventional method.

Numerical analysis of turbulent flow around a small propeller fan operating at the inlet of open chamber (개방된 챔버 입구에서 작동하는 소형 프로펠러 팬 주위의 난류유동해석)

  • O, Geon-Je;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1586-1594
    • /
    • 1997
  • Performance characteristics of a small propeller fan are numerically investigated solving the continuity and Reynolds-averaged Navier-Stokes equations. The Reynolds stresses for turbulent transport are modelled using a k-.epsilon. turbulence model. The present numerical procedure is constructed using the Finite Volume Method with the SIMPLE algorithms. The performance parameters obtained from the calculations are compared with the measured values for the various flow rates. A performance test of the fan shows different characteristics between a radial type at small flow rates and an axial type at large flow rates. Comparisons between the predictions and the measurements show that the predicted results are in good agreement with the measured values and reasonably reproduce the sharp variations of the power and head coefficient around a flow coefficient .PHI.=0.3. These comparisons indicate that the present numerical method is capable of resolving the performance characteristics with reasonable accuracy. At low flow rates, it is found that the flow enters the fan in an axial direction and is discharged radially outward at the tip which happens in the centrifugal fan. The centrifugal effect makes a significant difference in the characteristics of a fan at the low and high values of flow coefficient.