• 제목/요약/키워드: continual learning

검색결과 38건 처리시간 0.023초

PCB 부품 검출을 위한 Knowledge Distillation 기반 Continual Learning (Knowledge Distillation Based Continual Learning for PCB Part Detection)

  • 강수명;정대원;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.868-879
    • /
    • 2021
  • PCB (Printed Circuit Board) inspection using a deep learning model requires a large amount of data and storage. When the amount of stored data increases, problems such as learning time and insufficient storage space occur. In this study, the existing object detection model is changed to a continual learning model to enable the recognition and classification of PCB components that are constantly increasing. By changing the structure of the object detection model to a knowledge distillation model, we propose a method that allows knowledge distillation of information on existing classified parts while simultaneously learning information on new components. In classification scenario, the transfer learning model result is 75.9%, and the continual learning model proposed in this study shows 90.7%.

Knowledge Distillation 계층 변화에 따른 Anchor Free 물체 검출 Continual Learning (Anchor Free Object Detection Continual Learning According to Knowledge Distillation Layer Changes)

  • 강수명;정대원;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.600-609
    • /
    • 2022
  • In supervised learning, labeling of all data is essential, and in particular, in the case of object detection, all objects belonging to the image and to be learned have to be labeled. Due to this problem, continual learning has recently attracted attention, which is a way to accumulate previous learned knowledge and minimize catastrophic forgetting. In this study, a continaul learning model is proposed that accumulates previously learned knowledge and enables learning about new objects. The proposed method is applied to CenterNet, which is a object detection model of anchor-free manner. In our study, the model is applied the knowledge distillation algorithm to be enabled continual learning. In particular, it is assumed that all output layers of the model have to be distilled in order to be most effective. Compared to LWF, the proposed method is increased by 23.3%p mAP in 19+1 scenarios, and also rised by 28.8%p in 15+5 scenarios.

Continual Learning을 이용한 한국어 기계독해 (Korean Machine Reading Comprehension using Continual Learning)

  • 신중민;조상현;;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.609-611
    • /
    • 2021
  • 기계 독해는 주어진 지문 내에서 질문에 대한 답을 기계가 찾아 답하는 문제이다. 딥러닝에서는 여러 데이터셋을 학습시킬 때에 이전에 학습했던 데이터의 weight값이 점차 사라지고 사라진 데이터에 대해 테스트 하였을때 성능이 떨어진 결과를 보인다. 이를 과거에 학습시킨 데이터의 정보를 계속 가진 채로 새로운 데이터를 학습할 수 있는 Continual learning을 통해 해결할 수 있고, 본 논문에서는 이 방법을 MRC에 적용시켜 학습시킨 후 한국어 자연어처리 Task인 Korquad 1.0의 MRC dev set을 통해 성능을 측정하였다. 세 개의 데이터셋중에서 랜덤하게 5만개를 추출하여 10stage를 학습시킨 50K 모델에서 추가로 Continual Learning의 Learning without Forgetting를 사용하여 학습시킨 50K-LWF 모델이 F1 92.57, EM 80.14의 성능을 보였고, BERT 베이스라인 모델의 성능 F1 91.68, EM 79.92에 비교하였을 때 F1, EM 각 0.89, 0.22의 향상이 있었다.

  • PDF

Continual learning을 이용한 한국어 상호참조해결의 도메인 적응 (Domain adaptation of Korean coreference resolution using continual learning)

  • 최요한;조경빈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현 (Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning)

  • 김영준;김태완;김수현;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제19권3호
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

A Study on Conversational AI Agent based on Continual Learning

  • Chae-Lim, Park;So-Yeop, Yoo;Ok-Ran, Jeong
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.27-38
    • /
    • 2023
  • 본 논문에서는 시간의 흐름에 따라 새로운 데이터를 지속적으로 학습하고 성장할 수 있는 연속 학습 기반 대화형 AI 에이전트를 제안한다. 연속학습 기반 대화형 AI 에이전트는 태스크 관리자 (Task Manager), 사용자 속성 추출(User Attribute Extraction), 자동 확장 지식 그래프(Auto-growing Knowledge Graph), 크게 3가지 요소로 구성된다. 태스크 관리자는 사용자와의 대화에서 새로운 데이터를 발견하면 이전에 학습한 지식을 통해 새로운 태스크를 생성한다. 사용자 특성 추출 모델은 새로운 태스크에서 사용자의 특성을 추출하고, 자동 확장 지식 그래프는 새로운 외부 지식을 지속적으로 학습할 수 있도록 한다. 한정된 데이터셋을 기반으로 학습된 기존 대화형 AI 에이전트와 달리, 본 논문에서 제안하는 방법은 지속적인 사용자의 특성과 지식 학습을 기반으로 대화를 가능하게 한다. 연속학습 기술이 적용된 대화형 AI 에이전트는 사용자와의 대화가 축적될수록 개인 맞춤형 대응이 가능하며, 새로운 지식에도 대응이 가능하다. 본 논문에서는 시간에 따른 대화 생성 모델의 성능 변화 실험을 통해 제안하는 방법의 가능성을 검증한다.

C-COMA: 동적 다중 에이전트 환경을 위한 지속적인 강화 학습 모델 (C-COMA: A Continual Reinforcement Learning Model for Dynamic Multiagent Environments)

  • 정규열;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.143-152
    • /
    • 2021
  • 다양한 실세계 응용 분야들에서 공동의 목표를 위해 여러 에이전트들이 상호 유기적으로 협력할 수 있는 행동 정책을 배우는 것은 매우 중요하다. 이러한 다중 에이전트 강화 학습(MARL) 환경에서 기존의 연구들은 대부분 중앙-집중형 훈련과 분산형 실행(CTDE) 방식을 사실상 표준 프레임워크로 채택해왔다. 하지만 이러한 다중 에이전트 강화 학습 방식은 훈련 시간 동안에는 경험하지 못한 새로운 환경 변화가 실전 상황에서 끊임없이 발생할 수 있는 동적 환경에서는 효과적으로 대처하기 어렵다. 이러한 동적 환경에 효과적으로 대응하기 위해, 본 논문에서는 새로운 다중 에이전트 강화 학습 체계인 C-COMA를 제안한다. C-COMA는 에이전트들의 훈련 시간과 실행 시간을 따로 나누지 않고, 처음부터 실전 상황을 가정하고 지속적으로 에이전트들의 협력적 행동 정책을 학습해나가는 지속 학습 모델이다. 본 논문에서는 대표적인 실시간 전략게임인 StarcraftII를 토대로 동적 미니게임을 구현하고 이 환경을 이용한 다양한 실험들을 수행함으로써, 제안 모델인 C-COMA의 효과와 우수성을 입증한다.

객체 영역에 특화된 뎁스 추정 기반의 충돌방지 기술개발 (Object-aware Depth Estimation for Developing Collision Avoidance System)

  • 황규태;송지민;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.91-99
    • /
    • 2024
  • Collision avoidance system is important to improve the robustness and functional safety of autonomous vehicles. This paper proposes an object-level distance estimation method to develop a collision avoidance system, and it is applied to golfcarts utilized in country club environments. To improve the detection accuracy, we continually trained an object detection model based on pseudo labels generated by a pre-trained detector. Moreover, we propose object-aware depth estimation (OADE) method which trains a depth model focusing on object regions. In the OADE algorithm, we generated dense depth information for object regions by utilizing detection results and sparse LiDAR points, and it is referred to as object-aware LiDAR projection (OALP). By using the OALP maps, a depth estimation model was trained by backpropagating more gradients of the loss on object regions. Experiments were conducted on our custom dataset, which was collected for the travel distance of 22 km on 54 holes in three country clubs under various weather conditions. The precision and recall rate were respectively improved from 70.5% and 49.1% to 95.3% and 92.1% after the continual learning with pseudo labels. Moreover, the OADE algorithm reduces the absolute relative error from 4.76% to 4.27% for estimating distances to obstacles.

지속적 학습 환경에서 지식전달에 기반한 LwF 개선모델 (Advanced LwF Model based on Knowledge Transfer in Continual Learning)

  • 강석훈;박성현
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.347-354
    • /
    • 2022
  • 지속적 학습에서의 망각현상을 완화시키기 위해, 본 논문에서는 지식전달 방법에 기반한 개선된 LwF 모델을 제안하고, 이의 효율성을 실험 결과로 보인다. LwF에 지속적 학습을 적용할 경우, 학습되는 데이터의 도메인이 달라지거나 데이터의 복잡도가 달라지면, 이전에 학습된 결과는 망각현상에 의해 정확도가 떨어지게 된다. 특히 복잡한 데이터에서 단순한 데이터로 학습이 이어질 경우 그 현상이 더 심해지는 경향이 있다. 본 논문에서는 이전 학습 결과가 충분히 LwF 모델에 전달되게 하기 위해 지식전달 방법을 적용하고, 효율적인 사용을 위한 알고리즘을 제안한다. 그 결과 기존 LwF의 결과보다 평균 8% 정도의 망각현상 완화를 보였으며, 학습 태스크가 길어지는 경우에도 효과가 있었다. 특히, 복잡한 데이터가 먼저 학습된 경우에는 LwF 대비 최대 30% 이상 효율이 향상되었다.

신경망 자동생성 지원 MLOps 기술 동향 (MLOps Technology Trend Supporting Automatic Generation of Neural Network)

  • 김선태;조창식
    • 전자통신동향분석
    • /
    • 제39권5호
    • /
    • pp.12-20
    • /
    • 2024
  • As more devices are used across various industries and their performance improves, artificial intelligence applications are being increasingly adopted. Hence, the rapid development of neural networks suitable for diverse devices can determine the competitiveness of companies. Machine learning operations (MLOps), which constitute a framework that supports neural network generation and its immediate application to devices, have become necessary for the development of artificial intelligence. Currently, most MLOps are provided by major companies such as Google, Amazon, and Microsoft, which provide cloud services supported by large-scale computing power. In addition, various services are provided by the open-source project Kubeflow. We examine basic concepts and technology trends in MLOps and unveil additional functions required in industry.