• Title/Summary/Keyword: context model

Search Result 2,771, Processing Time 0.031 seconds

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

Fostering Students' Statistical Thinking through Data Modelling

  • Ken W. Li
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.127-146
    • /
    • 2023
  • Statistical thinking has a broad definition but focuses on the context of regression modelling in the present study. To foster students' statistical thinking within the context, teaching should no longer be seen as transfer of knowledge from teacher to students but as a process of engaging with learning activities in which they develop ownership of knowledge. This study aims at collaborative learning contexts; students were divided into small groups in order to increase opportunities for peer collaboration. Each group of students was asked to do a regression project after class. Through doing the project, they learnt to organize and connect previously accrued piecemeal statistical knowledge in an integrated manner. They could also clarify misunderstandings and solve problems through verbal exchanges among themselves. They gave a clear and lucid account of the model they had built and showed collaborative interactions when presenting their projects in front of class. A survey was conducted to solicit their feedback on how peer collaboration would facilitate learning of statistics. Almost all students found their interaction with their peers productive; they focused on the development of statistical thinking with concerted effort.

LLaMA2 Models with Feedback for Improving Document-Grounded Dialogue System (피드백 기법을 이용한 LLama2 모델 기반의 Zero-Shot 문서 그라운딩된 대화 시스템 성능 개선)

  • Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.275-280
    • /
    • 2023
  • 문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.

  • PDF

Assessment and Access Control for Ubiquitous Environments

  • Diep, Nguyen Ngoc;Lee, Sung-Young;Lee, Young-Koo;Lee, Hee-Jo
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1107-1109
    • /
    • 2007
  • Context-based access control is an emerging approach for modeling adaptive solution, making access control management more flexible and powerful. However, these strategies are inadequate for the increased flexibility and performance that ubiquitous computing environment requires because such systems can not utilize effectively all benefit from this environment. In this paper, we propose a solution based on risk to make use of many context parameters in order to provide good decisions for a safety environment. We design a new model for risk assessment in ubiquitous computing environment and use risk as a key component in decision-making process in our access control model.

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

Context-Aware Security System for Cloud Computing Environment (클라우드 컴퓨팅 환경을 위한 상황인식 보안 시스템)

  • Lee, Hyun-Dong;Chung, Mok-Dong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • Many security issues occur in cloud computing service environment such as authentication, access control, and so on. In this paper, we propose an effective authentication and access control model which provide integrated management and control when we access various resources in cloud computing environment. To address these problems, we suggest a context-aware single sign-on and access control system using context-awareness, integrated authentication, access control, and OSGi service platform in cloud computing environment. And we show design and implementation of context-aware single sign-on and access control system. Also we verified the flexibility and convenience of the proposed system through multi fact based integrated authentication in cloud computing environment. We could provide flexible and secure seamless security service by user context in cloud computing environment.

A Context-aware Messenger for Sharing User Contextual Information (사용자 컨텍스트 공유를 위한 상황인지 메신저)

  • Hong, Jin-Hyuk;Yang, Sung-Ihk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.906-910
    • /
    • 2008
  • As the mobile environment becomes widely used, there is a growth on the concern about recognizing and sharing user context. Sharing context makes the interaction between human more plentiful as well as helps to keep a good social relationship. Recently, it has been applied to some messengers or mobile applications with sharing simple contexts, but it is still required to recognize and share more complex and diverse contexts. In this paper, we propose a context-aware messenger that collects various sensory information, recognizes representative user contexts such as emotion, stress, and activity by using dynamic Bayesian networks, and visualizes them. It includes a modular model that is effective to recognize various contexts and displays them in the form of icons. We have verified the proposed method with the scenario evaluation and usability test.

User-driven Context-aware Service (사용자주도형 상황인식서비스)

  • Park, Jeongkyu;Lee, Keung Hae
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.1-12
    • /
    • 2013
  • Context-awareness is a computing technology that automatically delivers useful services to users based on their situation. Most previous studies on context-awareness adopted the view that the user simply is a consumer of what the developer creates. Few studies addressed catering to the need of personalized services for the user. They are either too complex for the user to grasp or unable to express many useful services due to their weak expressive power. To address these issues, we propose Dobby as a new model and architecture for user-driven context-aware service development. Dobby enables the user to create services that are more suited to his personal preferences. We argue that Dobby offers an enhanced method for defining personalized context-aware services over existing methods.

Using Practice Context Models to Knowledge Management in Proof-of-Concept Activities: A Contribution of Knowledge Networks and Percolation Theory

  • Neto, Antonio Jose Rodrigues;Borges, Maria Manuel;Roque, Licinio
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2021
  • This study introduces novel research using Practice Context Models supported by Knowledge Networks and Percolation Theory with the aim to contribute to knowledge management in Proof-of-Concept (PoC) activities. The authors envision this proposal as a potential instrument to identify network structures based on a percolation (propagation) threshold and to analyze the importance of nodes (e.g., practitioners, practices, competencies, movements, and scenarios) during the percolation of knowledge in PoC activities. After thirty months immersed in the natural PoC habitat, acting as observers and practitioners, and supported by an ethnographic exercise and a designer-research mindset, the authors identified the production of meaning in PoC activities occurring in a hermeneutic circle characterized by the presence of several knowledge networks; thus, discovering the 'natural knowledge' in PoC as a spectrum of cognitive development spread throughout its network, as each node could produce and disseminate certain knowledge that flows and influences other nodes. Therefore, this research presents the use of Practice Context Models 'connected' to Knowledge Networks and Percolation Theory as a potential and feasible proposal to be built using the attribution of values (weights) to the nodes (e.g., practitioners, practices, competencies, movements, scenarios, and also knowledge) in the context of PoC with the aim to allow the players (e.g., PoC practitioners) to have more flexibility in building alliances with other players (new nodes); that is, focusing on those nodes with higher value (focus on quality) in collaboration networks, i.e., alliances (connections) with the aim to contribute to knowledge management in the context of PoC.

Probabilistic Graph Based Object Category Recognition Using the Context of Object-Action Interaction (물체-행동 컨텍스트를 이용하는 확률 그래프 기반 물체 범주 인식)

  • Yoon, Sung-baek;Bae, Se-ho;Park, Han-je;Yi, June-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2284-2290
    • /
    • 2015
  • The use of human actions as context for object class recognition is quite effective in enhancing the recognition performance despite the large variation in the appearance of objects. We propose an efficient method that integrates human action information into object class recognition using a Bayesian appraoch based on a simple probabilistic graph model. The experiment shows that by using human actions ac context information we can improve the performance of the object calss recognition from 8% to 28%.