• 제목/요약/키워드: content-based medical image retrieval

검색결과 13건 처리시간 0.02초

Medical Image Retrieval with Relevance Feedback via Pairwise Constraint Propagation

  • Wu, Menglin;Chen, Qiang;Sun, Quansen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.249-268
    • /
    • 2014
  • Relevance feedback is an effective tool to bridge the gap between superficial image contents and medically-relevant sense in content-based medical image retrieval. In this paper, we propose an interactive medical image search framework based on pairwise constraint propagation. The basic idea is to obtain pairwise constraints from user feedback and propagate them to the entire image set to reconstruct the similarity matrix, and then rank medical images on this new manifold. In contrast to most of the algorithms that only concern manifold structure, the proposed method integrates pairwise constraint information in a feedback procedure and resolves the small sample size and the asymmetrical training typically in relevance feedback. We also introduce a long-term feedback strategy for our retrieval tasks. Experiments on two medical image datasets indicate the proposed approach can significantly improve the performance of medical image retrieval. The experiments also indicate that the proposed approach outperforms previous relevance feedback models.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

내용기반 초음파 영상 검색 시스템 (Content-Based Ultrasound Image Retrieval System)

  • 곽동민;김범수;윤옥경;김현순;김남철;고광식;박길흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2001
  • 본 논문에서는 초음파 의료영상 데이터베이스로부터 원하는 영상들을 찾아내기 위한 내용기반 영상 검색기법을 제안한다. 전체 영상 검색 시스템은 공간영역의 히스토그램과 웨이브릿 변환영역에서 부대역의 통계적 특성벡터를 이용한 2단계 검색 알고리즘을 사용하였다. 또한 히스토그램의 인덱싱 기법으로 Legendre 모멘트를 이용해서 데이터베이스에 저장되는 인덱스의 크기를 최소화시켜서 기존의 히스토그램을 이용한 검색방법 비해서 검색속도를 높이면서 검색결과를 개선시켰다.

  • PDF

Content-Based Image Retrieval Based on Relevance Feedback and Reinforcement Learning for Medical Images

  • Lakdashti, Abolfazl;Ajorloo, Hossein
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.240-250
    • /
    • 2011
  • To enable a relevance feedback paradigm to evolve itself by users' feedback, a reinforcement learning method is proposed. The feature space of the medical images is partitioned into positive and negative hypercubes by the system. Each hypercube constitutes an individual in a genetic algorithm infrastructure. The rules take recombination and mutation operators to make new rules for better exploring the feature space. The effectiveness of the rules is checked by a scoring method by which the ineffective rules will be omitted gradually and the effective ones survive. Our experiments on a set of 10,004 images from the IRMA database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to other existing approaches in the literature.

텍스쳐 기반의 G2T 검색자 개발 (Implementation of G2T Descriptor of the based in Texture)

  • 이용환;조재훈;이상범;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.49-52
    • /
    • 2007
  • The recent advances in digital imaging and computing technology have resulted in a rapid accumulation of digital media in the personal computing and entertainment industry. In addition, large collections of such data already exist in many scientific application domains such as the geographic information systems (GIS), digital library, trademark imaging, satellite imaging and medical imaging. Thus, the need for content-based retrieval from visual media, such as image and video data, is ever increasing rapidly in many applications.

  • PDF

Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Eun Young Kim;Beomhee Park;Hyun-Jin Bae;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제22권2호
    • /
    • pp.281-290
    • /
    • 2021
  • Objective: To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD). Materials and Methods: The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease). Results: The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP (p = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5. Conclusion: The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구 (A Systematic Review on Concept-based Image Retrieval Research)

  • 정은경
    • 한국비블리아학회지
    • /
    • 제25권4호
    • /
    • pp.313-332
    • /
    • 2014
  • 디지털 기술과 인터넷의 발달로 인해 이미지 생산, 유통, 이용이 활발하게 이루어지고 있으며, 이미지 검색에 관한 연구도 증가하는 추세이다. 이미지검색 분야는 내용기반과 의미기반으로 나뉘어 연구가 수행되어왔으며, 문헌정보학 관점에서는 특히 의미기반의 색인과 검색에 주목해왔다. 본 연구는 체계적인 분석기법을 이용하여 의미기반 이미지검색 분야 연구 집적의 분석결과를 제시하고자 한다. 이를 위하여 데이터는 Web of Science 수록된 문헌정보학(Information Science/Library Science)분야의 이미지검색 논문 및 학술회의 논문 총 282건을 대상으로 하였으며, 국내 연구와 비교를 위해서는 DBpia에 수록된 문헌정보학 분야의 이미지검색 논문 35건을 수집하였다. 데이터 분석 과정은 우선 개괄적인 현황을 파악하기 위해서 서지사항을 분석하였고, 이와 함께 내용분석을 통한 체계적 분석 고찰을 수행하였다. 연구 결과 이미지 검색은 기존 연구에서 밝힌 바와 같이 의미기반 이미지 검색이 주된 흐름이며, 그 중에서도 이미지 색인과 기술 분야, 이미지 요구와 검색행태 분야의 연구가 주를 이루는 것으로 나타났다. 최근 연구 경향으로 주목할 만한 분야는 집합적 색인, 다언어/다문화 환경에서의 색인과 이미지 요구, 감정색인과 접근 등이다. 이용자 중심의 이미지 검색 연구 측면에서는 특정 이용자 그룹 중에서 대학생이나 대학원생이 주된 연구 대상 이용자 그룹이며 이 외에도 이미지를 업무에 사용하는 이용자 그룹에 대한 연구가 주된 경향이다. 최근에는 일반 이용자를 대상으로 일상생활 환경에서 이미지검색에 관한 연구가 등장하기 시작했다. 국내 연구와 비교하면, 논문의 수적인 차이를 제외하면 세부 연구 주제에 있어서 상당히 유사한 분포를 보이는 것으로 나타났다. 이러한 연구결과는 지금까지의 이미지 검색 분야의 연구 집적을 조명하며, 향후 발전적 방향을 제시하는데 있어서 도움이 될 것으로 기대한다.

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

Web Service Workflows for Distributed Visual Media Retrieval Framework

  • Nah, Yun-Mook;Lee, Bog-Ju;Kim, Jung-Sun;Kwon, O-Byoung;Suh, Bo-Won;Ahn, Chul-Bum;Shin, Dong-Hoon
    • 한국멀티미디어학회논문지
    • /
    • 제10권6호
    • /
    • pp.707-715
    • /
    • 2007
  • The need for content-based retrieval from visual media, such as image and video data, is ever increasing rapidly in many applications, such as electronic art museums, internet shopping malls, internet search engines, and medical information systems. In our previous research, we proposed an architecture, called the HERMES, which is a Web Service-enabled visual media retrieval framework. In this paper, we propose the Web Service workflows that are employed in the HERMES. We describe how we designed the workflows for service registration and query processing in the framework. We especially explain how metadata and ontology can be utilized to realize more intelligent content-based retrieval on visual media data.

  • PDF

다중특징을 이용한 유방종양영상 내용기반검색 시스템 개발 (Development of Content Based Breast Tumor Image Retrieval System Using Multi Features)

  • 김민경;최흥국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.43-46
    • /
    • 2004
  • 현재 병리 의사에 의해 주관적으로 이루어지고 있는 병리 영상의 진단에 도움을 주기 위해 병리영상에서 객관적으로 추출 가능한 정보를 이용하여 유방종양 검색 시스템을 개발하였다. 다중 특징을 이용한 내용 기반 검색 방법을 사용하였으며, 영상에서 자동으로 추출 가능한 다양한 특징을 검색의 파라미터로 이용하였다. 진단에 도움을 주기 위해 전체 영상 뿐만 아니라 관심 있는 영역의 부분영상도 추출하여 검색이 가능하게 설계하였으며 시스템의 평가를 위해 단일 특징을 이용하여 영상을 검색 하였을 때와 다중 특징을 이용하여 영상을 검색 하였을 때의 검색율을 비교하였다. 향후 이 시스템은 병리영상의 진단에 있어 객관적이고 높은 재현성을 가지게 하는 보조도구로 사용될 수 있을 것이다.

  • PDF