• Title/Summary/Keyword: content template

Search Result 60, Processing Time 0.025 seconds

Synthesis and Characterization of Methyltriethoxysilyl-Mediated Mesoporous Silicalites

  • Rabbani, Mohammad Mahbub;Oh, Weon-Tae;Nam, Dae-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.119-122
    • /
    • 2011
  • A series of mesoporous silicalites was synthesized using different compositions of tetraethylorthosilicate and methyltriethoxysilane (MTES) as the silica source. Cetyltrimethylammonium bromide was used as the organic template. Their detailed pore structures were investigated by transmission electron microscopy, X-ray diffraction, and N2 adsorption method. The thermal properties of these silicalites were studied by thermogravimetric analysis. The increased amount of MTES destroyed mesoporous channels and reduced pore sizes from 3.4 nm to 2.8 nm in calcined silicalites. The calcined silicalite transformed completely into an amorphous state at 30% MTES loading. Methyl pending groups of MTES hindered the structural ordering of ≡Si-O- frameworks, resulting in an amorphous structure. This was caused by the insufficient formation of supramolecular assembly with the organic template. No capillary condensation step was found in MS 7/3 silicalite. The other capillary condensation steps shifted toward the lower relative pressure with increasing MTES content, indicating the reduction of pore sizes.

Flexural Strength of Macroporous Silicon Carbide Ceramics (거대기공 다공질 탄화규소 세라믹스의 꺾임강도)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.360-367
    • /
    • 2011
  • Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.

Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior (수직 배향된 Ga-doped ZnO nanorods의 합성과 전기적 특성)

  • Ahn, C.H.;Han, W.S.;Kong, B.H.;Kim, Y.Y.;Cho, H.K.;Kim, J.J.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.414-414
    • /
    • 2008
  • Vertically well-aligned Ga-doped ZnO nanorods with different Ga contents were grown by thermal evaporation on a ZnO template. The Ga-doped ZnO nanorods synthesized with 50 wt % Ga with respect to the Zn content showed maximum compressive stress relative to the ZnO template, which led to a rapid growth rate along the c-axis due to the rapid release of stored strain energy. A further increase in the Ga content improved the conductivity of the nanorods due to the substitutional incorporation of Ga atoms in the Zn sites based on a decrease in lattice spacing. The p-n diode structure with Ga-doped ZnO nanorods, as a n-type, displayed a distinct white light luminescence from the side-view of the device, showing weak ultraviolet and various deep-level emissions.

  • PDF

Fabrication of 3-dimensional Sn-C Composites Using Microsphere (미소구체를 이용한 3차원 Sn-C 복합체 제조)

  • Park, Bo-Gun;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.741-746
    • /
    • 2010
  • Three-dimensionally ordered macro-porous Sn-C composites were prepared by using polystyrene microsphere as a template. The Sn-C composites were composed of well-interconnected pore with circular shape and wall structure with wall thickness of a few tens of nano-meters. This porous three-dimensional structure is readily and uniformly accessible to the electrolyte, which facilitates lithium ion diffusion during charge-discharge reactions. The wall thickness of the composites was increased as the increase of Sn content of the composite. From EDS analysis, it is confirmed that the Sn was dispersed uniformly in Sn-C composites. The capacity was increased as the Sn content increased, which is due to Sn anode with high capacity. The Sn-C composites with high Sn content showed superior cyclic performances. Such enhancement is ascribed to the thick wall thickness and small pore size of the sample with high Sn content. The Sn-C composite with Sn 30 wt% showed relatively high capacity and stable cycle life, however, the stability of the 3-dimensional structure should be enhanced by further work.

Development of a Simulation Scenario on Emergency Nursing Care of Dyspnea Patients (간호사를 위한 호흡곤란 응급관리 시뮬레이션 시나리오 개발)

  • Kang, Hye-Won;Hur, Hea-Kung
    • Journal of Korean Critical Care Nursing
    • /
    • v.3 no.2
    • /
    • pp.61-76
    • /
    • 2010
  • Purpose: This study was aimed to construct an algorithm of dyspnea emergency care and develop a simulation scenario for emergency care of dyspnea based on the algorithm. Methods: The first stage of this methodological study was to construct a preliminary algorithm based on a literature review, and content and clinical validity were established. Reflecting the result of content and clinical validity for this preliminary algorithm, simulation scenario was developed based on the modified Bay Area Simulation Collaborative scenario template. The content validity of this scenario was established, and clinical applicability was tested by applying this scenario to nurses. Results: The final simulation scenario of emergency care of dyspnea consisted of scenario overview, curricular integrity, and scenario script. The scenario was proceeded on 7 phases of the algorithm as follows; initial assessment, immediate emergency care, reassessment of dyspnea, monitoring respiratory failure, checking pulse if respiratory failure occurs, decision making on cardiopulmonary resuscitation or intubation, determining a differential diagnosis according to origin of dyspnea. Conclusion: The simulation scenario of emergency care of dyspnea developed in this study may provide a strategy of simulation education for emergency care of dyspnea for nurses.

  • PDF

Effect of SPR Chip with Nano-structured Surface on Sensitivity in SPR Sensor (나노형상을 가진 표면플라즈몬공명 센서칩의 감도 개선 효과)

  • Cho, Yong-Jin;Kim, Chul-Jin;Kim, Namsoo;Kim, Chong-Tai;Kim, Tae-Eun;Kim, Hyo-Sop;Kim, Jae-Ho
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Surface plasmon resonance (SPR) which is utilized in thin film refractometry-based sensors has been concerned on measurement of physical, chemical and biological quantities because of its high sensitivity and label-free feature. In this paper, an application of SPR to detection of alcohol content in wine and liquor was investigated. The result showed that SPR sensor had high potential to evaluate alcohol content. Nevertheless, food industry may need SPR sensor with higher sensitivity. Herein, we introduced a nano-technique into fabrication of SPR chip to enhance SPR sensitivity. Using Langmuir-Blodgett (LB) method, gold film with nano-structured surface was devised. In order to make a new SPR chip, firstly, a single layer of nano-scaled silica particles adhered to plain surface of gold film. Thereafter, gold was deposited on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. In this study, two types of silica particles, or 130 nm and 300 nm, were used as template beads and sensitivity of the new SPR chip was tested with ethanol solution, respectively. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivity showed improvement of 95% over the conventional one.

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Structural Analysis Algorithm for Automatic Transcription 'Pansori' (판소리 자동채보를 위한 구조분석 알고리즘)

  • Ju, Young-Ho;Kim, Joon-Cheol;Seo, Kyoung-Suk;Lee, Joon-Whoan
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.28-38
    • /
    • 2014
  • For western music there has been a volume of researches on music information analysis for automatic transcription or content-based music retrieval. But it is hard to find the similar research on Korean traditional music. In this paper we propose several algorithms to automatically analyze the structure of Korean traditional music 'Pansori'. The proposed algorithm automatically distinguishes between the 'sound' part and 'speech' part which are named 'sori' and 'aniri', respectively, using the ratio of phonetic and pause time intervals. For rhythm called 'jangdan' classification the algorithm makes the robust decision using the majority voting process based on template matching. Also an algorithm is suggested to detect the bar positions in the 'sori' part based on Kalman filter. Every proposed algorithm in the paper works so well enough for the sample music sources of 'Pansori' that the results may be used to automatically transcribe the 'Pansori'.

Effect of the SBA-15 template and KOH activation method on CO2 adsorption by N-doped polypyrrole-based porous carbons

  • Yuan, Hui;Jin, Biao;Meng, Long-Yue
    • Carbon letters
    • /
    • v.28
    • /
    • pp.116-120
    • /
    • 2018
  • Nitrogen-doped carbons have attracted much attention due to their novel application in relation to gas storage. In this study, nitrogen-doped porous carbons were synthesized using SBA-15 as a template, polypyrrole as the carbon and nitrogen precursor, and KOH as an activating agent. The effect of the activation temperature ($600-850^{\circ}C$) on the $CO_2$ adsorption capacity of the obtained porous carbons was studied. Characterization of the resulting carbons showed that they were micro-/meso-porous carbon materials with a well-developed pore structure that varied with the activation temperature. The highest surface area of $1488m^2g^{-1}$ was achieved at an activation temperature of $800^{\circ}C$ (AC-800). The nitrogen content of the activated carbon decreased from 4.74 to 1.39 wt% with an increase in the activation temperature from 600 to $850^{\circ}C$. This shows that nitrogen is oxidized and more easily removed than carbon during the activation process, which indicates that C-N bonds are more easily ruptured at higher temperatures. Furthermore, $CO_2$ adsorption isotherms showed that AC-800 exhibited the best $CO_2$ adsorption capacity of $110mg\;g^{-1}$ at 298 K and 1 bar.

Development of Module for Consumer Content Area Based on the Backward Design (백워드 디자인(Backward Design)에 기초한 소비 단원의 수업 모듈 개발)

  • Lee, Gyeong Suk;Yoo, Taemyung
    • Journal of Korean Home Economics Education Association
    • /
    • v.27 no.2
    • /
    • pp.95-119
    • /
    • 2015
  • This study discussed the major notion of backward design placing emphasis on performance and evaluation, and clarified the concepts of 'understanding' and 'enduring understanding' based on the literature of Wiggins and McTighe and previous studies. This study also developed a sample curriculum module for a consumer unit for 7 class hours based on the 'Understanding by Design' template. This study concluded that backward design can contribute to achieving student's high performance from evaluation planning prior to actual instruction, to utilizing learning with higher order thinking and skills by analyzing key concepts, and to reconstructing curriculum contents considering a teacher's perspective, students' needs, and each school's situation and context.

  • PDF