• Title/Summary/Keyword: content features

Search Result 1,191, Processing Time 0.022 seconds

Social Media Marketing Strategies for Tourism Destinations: Effects of Linguistic Features and Content Types

  • Song, Seobgyu;Park, Seunghyun Brian;Park, Kwangsoo
    • Journal of Smart Tourism
    • /
    • v.1 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • This study explored the relationship between post types and linguistic characteristics in marketer-generated content and social media engagement to find the optimized content to enhance social media engagement level. Post data of 23,588 marketer-generated content were collected from 50 states' destination marketing organization Facebook pages in the United States. The collected data were analyzed by employing social media analytics, linguistic analysis, multivariate analysis of variance, and discriminant analysis. The results showed that there are significant differences in both engagement indicators and linguistic scores among the three post types. Based on research findings, this research not only provided researchers with theoretical implications but also suggested practitioners the most effective content designs for travel destination marketing in Facebook.

Social Media Advertising Effectiveness: A Conceptual Framework and Empirical Validation

  • Liguo Lou;Joon Koh
    • Asia pacific journal of information systems
    • /
    • v.28 no.3
    • /
    • pp.183-203
    • /
    • 2018
  • In the era of Web 2.0, social media advertising can simultaneously stimulate consumers' brand purchase intention and brand information sharing intention. Product sales and brand information diffusion are equally important for a company that conducts advertising. This study investigates how features of brand content influence social media advertising effectiveness by integrating the stimulus-organism-response model and classic advertising effectiveness models. An analysis of 267 survey questionnaires shows that brand content-related cues, including perceived uniqueness, perceived vividness, and perceived interactivity have significant effects on consumers' affective and cognitive involvement, which then affect their attitude toward brand content. As a result, the consumers' attitude toward the brand and their brand purchase intention, as well as their brand content sharing intention, are positively affected by attitude toward brand content. This study contributes to a better understanding of how social advertising works, which suggests that managers should effectively use social media to conduct advertising.

Learning Free Energy Kernel for Image Retrieval

  • Wang, Cungang;Wang, Bin;Zheng, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2895-2912
    • /
    • 2014
  • Content-based image retrieval has been the most important technique for managing huge amount of images. The fundamental yet highly challenging problem in this field is how to measure the content-level similarity based on the low-level image features. The primary difficulties lie in the great variance within images, e.g. background, illumination, viewpoint and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, discover and highlight the content-level information, and be robust to those variances. Motivated by these observations, we in this paper propose a probabilistic similarity learning approach. We first model the distribution of low-level image features and derive the free energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a learning approach for the derived kernel, under the criterion that the kernel outputs high similarity for those images sharing the same class labels and output low similarity for those without the same label. The advantages of the proposed approach, in comparison with previous approaches, are threefold. (1) With the ability inherited from probabilistic models, the similarity measure can well adapt to data distribution. (2) Benefitting from the content-level hidden variables within the probabilistic models, the similarity measure is able to capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. The proposed approach is extensively evaluated on two well-known databases. It achieves highly competitive performance on most experiments, which validates its advantages.

A Study on the game app production utilizing wearable smart device health care information (웨어러블 스마트 디바이스의 헬스 케어 정보를 활용한 게임 앱 제작에 관한 연구)

  • Choi, Yong-Seok;Ju, Woo-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.168-169
    • /
    • 2015
  • Recent wearable smart device products, but with a variety of features and form that go out after a series of releases in has been outside for a lack of consumer content. The device advances, the type of equipment attached to the user's body was released, which was the background to be subjected to a health-care products of interest to the user and the machine-to-machine interaction. This study is to identify health care elements wearable smart device content around the market with features to interact with the game content and game content derived elements fit smart wearable devices. Survey research method was developed or released wearable devices and game content and take advantage of this any existing research literature related to game development. Based on this we derive the interactive elements for a wearable smart devices based.

  • PDF

Meta-data Configuration and Wellness Feature Analysis Technique for Wellness Content Recommendation (웰니스 콘텐츠 추천을 위한 메타데이터 구성 및 웰니스 특성 분석 기법)

  • Hong, Min-Sung;Lee, O-Joun;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.83-93
    • /
    • 2014
  • Research into recommendation systems for wellness content has focused on representative research on the convergence of wellness and information technology, as interest in wellness has recently increased. But existing research is not suitable because it uses only one or two of the five wellness areas: physical, emotional, social, intellectual, and spiritual. And It cause decline of reliability and satisfaction for recommendation. Thus, a wellness areal feature analysis and integration management technique is needed. In this paper, suggest meta-data configuration and feature analysis technique of content. Also Cosine similarity of wellness areal features of the content was analyzed by applying a wellness areal score calculated in this way and by suggested wellness areal detailed properties and a measurement system to verify the efficiency of this research. This allows the wellness features of contents analyzed, and even will be able to personalized recommendations service for wellness.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.

Implementation of Content Based Color Image Retrieval System using Wavelet Transformation Method (웨블릿 변환기법을 이용한 내용기반 컬러영상 검색시스템 구현)

  • 송석진;이희봉;김효성;남기곤
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, we implemented a content-based image retrieval system that user can choose a wanted query region of object and retrieve similar object from image database. Query image is induced to wavelet transformation after divided into hue components and gray components that hue features is extracted through color autocorrelogram and dispersion in hue components. Texture feature is extracted through autocorrelogram and GLCM in gray components also. Using features of two components, retrieval is processed to compare each similarity with database image. In here, weight value is applied to each similarity value. We make up for each defect by deriving features from two components beside one that elevations of recall and precision are verified in experiment results. Moreover, retrieval efficiency is improved by weight value. And various features of database images are indexed automatically in feature library that make possible to rapid image retrieval.

Content-Based Image Retrieval Using Visual Features and Fuzzy Integral (시각 특징과 퍼지 적분을 이용한 내용기반 영상 검색)

  • Song Young-Jun;Kim Nam;Kim Mi-Hye;Kim Dong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.20-28
    • /
    • 2006
  • This paper proposes visual-feature extraction for each band in wavelet domain with both spatial frequency features and multi resolution features, and the combination of visual features using fuzzy integral. In addition, it uses color feature expression method taking advantage of the frequency of the same color after color quantization for reducing quantization error, a disadvantage of the existing color histogram intersection method. Also, it is found that the final similarity can be represented in a linear combination of the respective factors(Homogram, color, energy) when each factor is independent one another. With respect to the combination patterns the fuzzy measurement is defined and the fuzzy integral is taken. Experiments are peformed on a database containing 1,000 color images. The proposed method gives better performance than the conventional method in both objective and subjective performance evaluation.

  • PDF