• 제목/요약/키워드: contamination performance

검색결과 363건 처리시간 0.022초

반도체 클린룸용 배기 열회수식 에어와셔의 에너지 소비량 성능평가 실험 (An Experiment on Performance Evaluation of Energy Consumption of an Exhaust Air Heat Recovery Type Air Washer for Semiconductor Manufacturing Clean Rooms)

  • 송근수;유경훈;신대건;손승우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.844-849
    • /
    • 2008
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. From the energy saving point of view, heat recovery is useful for the reduction of air conditioning energy consumption for clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. However, so far there have not been sufficient studies of analyzing the comparison of the amounts of energy consumption and saving. In the present study, an experiment was conducted to investigate the energy consumption and heat recovery of a fin-coil type air washer system for semiconductor manufacturing clean rooms.

  • PDF

LDPE에서 부시형 전기트리의 성장에 수반되는 부분방전 펄스의 특성 (Properties of PD Pulses accompanying with propagation of Bush-type tree in LDPE)

  • 박영국;강성화;정수현;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition, The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level. the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

전기-공기역학적 렌즈를 이용한 가상임팩터 포집효율에 관한 수치적 연구 (Numerical Investigation of Collection Efficiency of Virtual Impactor with Electro-Aerodynamic Lens)

  • ;육세진
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.63-70
    • /
    • 2019
  • An electro-aerodynamic lens for improving the performance of virtual impactor has been proposed in this study. ANSYS FLUENT Release 16.1 was used for numerical analysis of virtual impactor with and without the electro-aerodynamic lens, used to collimate the incoming aerosol particles into a particle beam before injecting the particles into the virtual impactor. Particles supplied to the electro-aerodynamic lens were assumed to be highly charged. By using an aerodynamic lens before the virtual impactor, without any electrostatic effect, it was found that the cut-off diameter of the virtual impactor was reduced from $4.2{\mu}m$ to $0.68{\mu}m$ and that the fine particle contamination problem became more serious. However, by employing the combined electrostatic and aerodynamic effects, that is, by applying electric voltage potential to the electro-aerodynamic lens, the cut-off diameter was found to be further reduced to $0.45{\mu}m$ and the fine particle contamination was eliminated.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.

Development of a real-time gamma camera for high radiation fields

  • Minju Lee;Yoonhee Jung;Sang-Han Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.56-63
    • /
    • 2024
  • In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.

일부 간호대학생의 혈액매개질환 예방 지침에 대한 지식과 실천 정도 (Knowledge and Performance of Universal Precautions by Nursing Students)

  • 김경미;김민아;정여숙;김남초
    • 대한간호학회지
    • /
    • 제29권4호
    • /
    • pp.929-939
    • /
    • 1999
  • The purpose of this study was to identify knowledge of universal precautions and its performance in practice. The research was conducted from November 2 to 30, 1998. A total 515 student nurses ; 249 from a baccalaureate nursing college and 266 from second and third year of a 3-year community nursing college were surveyed. The results are as following : 1. The average score for universal precautions knowledge was 270.41$\pm$19.43/300(range 150-300). The results showed that 99.2% of students avoid injury from used needles, 98.6% answered that they always wash their hands if they had contact with the patient's blood and they always dispose of used needles in special collectors (97.7%) for needles. But, 39.2% responsed that they dispose of used needles after recapping them. 2. The average score for universal precautions knowledge of the senior students in the 4-year college was the highest (277.65$\pm$13.99). 3. The average score for the performance of universal precautions knowledge was 53.18 $\pm$5.91(range 14-70). The items : ‘I cautiously avoid injury from the used needles’(4.92$\pm$0.33), ‘I always wash my hands if there has been contact with the patient's blood’(4.91$\pm$0.34), and ‘I always disposed of used needles in the appropriate collector’(4.89$\pm$0.42) showed the highest performance. However ‘I always dispose of used needles after recapping them’(2.19$\pm$1.39) and ‘I always use protection goggles when in danger of contamination’(2.19$\pm$1.20) showed low performance level. 4. The highest average score for universal precautions performance was shown among the second year students in 3-year nursing college (54.19$\pm$6.92) between the groups. It showed that the level of the universal precautions performance was higher for those who had education on university precautions prior to performance of the universal precautions than for those without any prior education. 5. The percentage of students who reported the experience of direct contact with patients' blood and/or body fluids was 42.30%. The experience of direct contact with blood and/or body fluids of the educational group was significantly higher than those were not educated. 6. The most frequent cause of the direct contact was ‘needle pricking and/or skin cut’(63.04%). The most frequent substance with which the students contact was ‘blood’(59.85%). The majority of the sample had answered that the mode of contamination was ‘unknown’(63.54%). The majority of the sample answered that strategies used after contamination included ‘washing with soap’(33.61%). Reviewing the chart of patients or asking other health professionals(28.85%). 7. The number of students who had the experience of a needle stick and/or skin cut was 145(28.16%). The clinical practice places where the incidents occurred were mainly in the internal medicine unit (45.07%) and the surgical unit (31.92%) followed by the intensive care unit and the emergency unit in order. The experience of a needle stick and/or skin cut happened during on intra-muscular injection 47.34% and intravenous injection 21.81%. The causes of the needle stick and/or skin cut were ‘putting the needle cap back on 77(35.81%)’. The number of students who took an appropriate post management blood test and/or vaccination was 27(18.62%). 8. The Pearson Correlation Coefficient between the knowledge of universal precautions and performance of universal precautions in practice showed a positive correlation.

  • PDF

환경대기 중 유해성 VOC에 대한 자동연속 측정방법의 성능 최적화에 관한 연구 (A Study on the Performance Optimization of a Continuous Monitoring Method for Hazardous VOCs in the Ambient Atmosphere)

  • 손은성;서영교;이동현;이민도;한진석;백성옥
    • 한국대기환경학회지
    • /
    • 제25권6호
    • /
    • pp.523-538
    • /
    • 2009
  • Recently, there has been a keen demand for real-time automatic monitoring of VOCs not only in Korea but other developed countries. We carried out this study to evaluate and to optimize the performance of a continuous automatic monitoring system for hazardous VOCs (HVOCs) in the ambient atmosphere, using an on-line GC system. The online system normally consisted of a Nafion dryer prior to a cold trap of an automatic thermal desorption apparatus and a GC system equipped with two detectors, i.e. PID and ECD. Preliminary tests conducted to check out any contamination of the system revealed an evidence of significant artifact formation of benzene, and it was found that the Nafion dryer (even brand new one) is the source of the benzene artifact. Thus, all the subsequent experiments in this study was carried out inevitably by removing the Nafion dryer. The on-line GC method was investigated with a variety of QC/QA performance criteria such as repeatability, linearity, lower detection limits, and accuracy. In order to find out the best operating condition for the on-line GC system, three different types (in terms of adsorption strength) of cold trap combinations were tested, i.e. (i) Tenax-TA and Carbopack-B combination (weak and hydrophobic); (ii) Tenax-TA, Carbopack-X and Carboxen-1000 combination (strong and hydrophilic); and (iii) Tenax-TA and Carbopack-X combination (medium and hydrophobic/hydrophilic). The USEPA TO-17 manual method was selected as a reference method to evaluate the performance of the on-line method. A series of experiments revealed that the system performance was superior to others when a cold trap packed with hydrophilic adsorbents (Tenax-TA/Carbopack-X/Carboxen-1000 combination) was used and operated at $25^{\circ}C$. However, the system with a cold trap packed with a combination of Tenax-TA and Carbopack-X is more recommended for field applications since the carboxen-1000 adsorbent is too sensitive to water vapor, and hence the performance of the system might be very unstable to humid samples or during rainy days. Furthermore, the precision and accuracy criteria of the Tenax-TA/ Carbopack-X combination were generally compatible with the triple adsorbents cold trap. The continuous automatic monitoring method is, thus, considered very useful to real-time monitoring to understand the variations of VOCs concentrations in ambient air, as it adopts much simpler procedures in sampling, analysis, and data integration steps than manual monitoring methods. However, it should be noted that there is a high possibility of benzene artifacts formation through the Nafion dryer, which is often installed to remove water vapor in air samples before being adsorbed onto the cold trap. Therefore, if a Nafion dryer is used in any studies of monitoring VOCs, the benzene contamination should be carefully examined before carrying out obtaining the data.

Innovative Capability and Its Connection with Worker's Environmental Performance

  • KANG, Eungoo
    • 산경연구논집
    • /
    • 제13권7호
    • /
    • pp.17-25
    • /
    • 2022
  • Purpose: Environmental contamination has lately been seen as a consequence of the rise in environmental challenges brought on by rapid industrial expansion. At this point, the current research asks an important question about what the factors are to motivate employees' green performance, increasing corporate sustainability. Research design, data and methodology:The current author selected total 19 items to obtain real data and achieve the purpose of this research. For measuring of the causality between the worker's innovative capability and green performance, the current author used the multiple regression statistical tool using U.S. 215 responses in four industry. Results: The statistical finding definitely indicated that there exists the causal linkage between two key factors (Innovation capability and green performance) as well as the strong direction between two constructs. As a result, the current author could accept all hypotheses, checking no existing the multicollinearity of the present constructs with 'TOL' and 'VIF' values. Conclusions: The present research concluded that literature and business management scholars and practitioners will benefit from this study's statistical results. Furthermore, rewarding staff creativity, encouraging quick answers to market movements, and incorporating technology into everyday operations are all ways that companies may cultivate an environmental stewardship culture.

지하역사 승강장 공조 시스템 필터용 항바이러스 코팅 성능 및 재생 성능 평가 (Development of Optimal Antiviral Coating Method for the Air Filtration System of Subway Station)

  • 박대훈;황정호;신동호;김영훈;이건희;박인용;김상복;홍기정;한방우
    • 한국입자에어로졸학회지
    • /
    • 제18권1호
    • /
    • pp.9-21
    • /
    • 2022
  • In this study, a novel antiviral coating method for the air filtration system of subway station was investigated. Using dry aerosol coating process, we developed a high-performance antiviral air filter with spark discharger and carbon brush type ionizer. Silver nanoparticles were produced by a spark discharge generation system with ion injection system and were used as antiviral agents coated onto a medium grade air filter. The pressure drop, filtration efficiency, and antiviral ability of the filter against aerosolized MS2 virus particles as a surrogate of SARS-CoV-2 virus were tested with dust contamination. Dust contamination caused the increase of the filtration efficiency and pressure drop, while the antiviral agents (in this study, silver nanoparticles) coating did not have any significant effect on the filtration efficiency and pressure drop. Using these properties, we suggested a novel method to maximize the antiviral performance of the antiviral air filter that was contaminated by dust particles. Moreover theoretical analysis of antiviral ability with dust contamination and re-coated antiviral agents was carried out using a mathematical model to calculate the time-dependent antiviral effect of the filter under actual conditions of subway station. Our model can be used to apply on antiviral air filtration system of subway station for prevention of pandemic diffusion, and predict the life cycle of an antiviral filter.