• Title/Summary/Keyword: contaminated water

Search Result 1,322, Processing Time 0.03 seconds

Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil (오염 토양의 식물상 복원효율에 미치는 식물, 근권세균 및 물리.화학적 인자의 영향)

  • Hong, Sun-Hwa;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • Phytoremediation is an economic and environmentally friendly technique to remediate contaminated-soil. In this study, the effects of plants, rhizobacteria and physicochemical factors on phytoremediation have been reviewed. For successful phytoremediation, the selection of plants is primarily important. To remediate soil contaminated with petroleum hydrocarbon, raygrass (Lolium multiflorum lam), white mustard, vetch (Vicia villosa), tall fescue (Festuca arundinacea), legumes, poplar, and Pine (Pinus densiflora) were mainly applied, and the removal efficiency of petroleum hydrocarbon were ranged 68 to 99%. Corn (Zea mays), raygrass (Lolium multiflorum lam), vetch (Vicia villosa), mustard, clover (Trifolium repens), and tall fescue (Festuca arundinacea) were used for the removal of polycyclic aromatic hydrocarbon, and their removal efficiencies were 50-98%. Rhizobacteria play significant roles for phytoremediation because they can directly participate in the degradation of contaminant as well as promoting plants growth. The following rhizobacteria were preferred for phytoremediation: Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcum, Bacillus megaterium, and Bacillus subtilis. Pysicochemical factors such as pH, temperature, nutrient, electron acceptor, water content, organic content, type of contaminants are consequential limiting factors for phytoremediation.

Survey of the oil contaminated level and preliminary field bioremediation test in the Mountain Baegun at Uiwang city (의왕시 백운산 주변 유류 오염도 조사 및 현장 복원 기초실험)

  • 김종석;주춘성;김윤관;권은미;정욱진
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.3-11
    • /
    • 2002
  • The objective of this study was to survey the oil contamination around the Mountain Baegun at Uiwang city to obtain the preliminary data for bioremediation. For measuring the oil concentrations and physical properties from soil, we analyzed BTEX. TPH and pH, organic content, water content, pormeability coefficient, gravity, porosity and used the purge & trap method for analyzing BTEX. Using the Accelerated Solvent Extractor, we pretreated the samples and then analyzed TPH using GC-FID as soon as possible. From the analysis results, maximum concentration of TPH was 24.773mg/kg and BTEX was 101.7mg/kg. The results of TPH at the Mountain Baegun were higher than the enforcement standard of soil contamination(Korea) and the BTEX concentrations were also higher than the advisory standard of soil contamination(Korea). From these results, the Mountain Baegun may requires to remedy the oil-contaminated soil. In addition, we performed the field bioremediation test for five weeks at the Mountain Baegun using the microbial additives that were developed by our laboratory. From the results of the field test, we could find the about 95% of the oil was removed from the contaminated soil in five weeks. So we consider that it is the one of the useful solutions to remedy the oil-polluted site.

Variation of Heavy Metal Accumulation and Inorganic Matter of Rumex crispus Community from Kumho Riverside (금호강 하류 소리쟁이군락의 무기물 및 중금속 축적의 변이)

  • 박태규;박용목;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.139-144
    • /
    • 1999
  • In order to clarify ecological survival strategy of Rumex crispus community dominating under contaminated area of lower region of Kumho riverside including Chimsangyo (CS), Paldalgyo (PD), Talseochon (TS) and Kumhogyo (KH), we analyzed the content of heavy metals and inorganic matter and vegetative growth. R. crispus showed rapid formation of community by high growth rate, high T/R ratio and showed maximum T/R ratio at the contaminated area Talseochon. Nitrogen and phosphorus contents in R. crispus showed high value in shoot than that of root. T/R ratio of nitrogen and phosphorus showed 3.1∼3.6 and 1.5∼4.5 for the early growth stage, and 6.7∼17.3 and 3.9∼8.3 for the late one, respectively. The absorbed heavy metals by riot were translocated to shoot, the heavy metal content in shoot higher than those in root of Cu, Zn, Fe, and Pb for 3.6, 1.7, 1.5 and 4.8 times, respectively. Distribution ratio of the heavy metals in each organ showed 61∼85% and 15∼39% for shoot and root, respectively. R. crispus accumulated heavy metals in the order of Fe>Zn>Cu>Pb in shoot, and showed maximum values of Cu, Zn, Fe and Pb for 89.7, 376.6, 2946.1 and 13.2 ㎍/g dw, respectively at Talseochon in April. A physiological and morphological characteristics of R. crispus showed thickened leaf, increased water content above 80% and rapid growth of shoot. R. crispus showed ecological adaptation to the contaminated area by transportation of heavy metals and inorganic matter to shoot, and by accumulation of Ca ion in root.

  • PDF

Treatment of Naphtalenes-Contaminated Soil by Surfactant/ Coagulant (계면활성제/응집제를 이용한 나프탈렌 오염토양 처리)

  • Park, Joon-Seok;Park, Jong-Un;Shin, Chul-Ho;Park, Hee-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.82-90
    • /
    • 2004
  • This study was conducted to evaluate in situ soil flushing and coagulation for naphtalenes-contaminated soil remediation. Mixed-surfactant of 1% POE12 and 1% SDS (1 : 1 by volume basis) was used as a flushing solution. When 5 pore volumes of mixed -surfactant were added to soil column, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene with about 1,500 mg/kg(dry soil) were approximately 80% and 60% respectively. In adding 13 pore volumes of mixed-surfactant, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene were 90% and 82%. However, considering in situ soil flushing with distilled water, about 42% and 71% were flushed for 2-methylnaphtalene and 1,5-dimethylnaphtalene by surfactant-only. For about 10,000 mg/kg(dry soil) diesel-contaminated soil, 40% and 70% of TPH were flushed-out in 5 pore volumes and 13 pore volumes addition. However, for naphtalenes in diesel TPH, 90% of flushing efficiency was discovered in adding only 5 pore volumes of flushing solution. There was not discovered significant difference among coagulation efficiencies of 6 kinds of polymers, and the coagulation efficiencies were near 50%.

  • PDF

Microbiological Evaluations on the Facilities and Utilities of Korean Restaurants (한식당 설비와 기구의 미생물 평가)

  • Jeong, Dong-Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1611-1618
    • /
    • 2005
  • The microbiological examinations were conducted for the hygienic evaluation on three Korean restaurants during summer season in Busan, Korea. Total one hundred and sixty swabbed samples using sponge were collected from the surface of facilities and utensils at restaurants and total and coliform counts were measured. Also thirty- six air samples were collected at inside of three restaurants for measuring total, coliform, Staphy-lococcus and mold and yeast counts. All collected samples kept in an ice-packed box were transported to the laboratory and analyzed. The results demonstrated that most swabbed samples were highly contaminated with microorganisms and coliforms. The degree of contamination depended on the sampling sites. Averages of total counts of surface swab samples were ranged from not detectable to 2.14$\times\10^{9}$/200 $cm^{2}$, while those of coliforms from not detectable to 8.34$\times\10^{7}$/200 $cm^{2}$/200 $cm^{2}$. Microorganisms also detected from most agar strips of air samples for total, coliform, Staphylococcus and mold and yeast counts. The severely contaminated sites were floor, trench, water bottle, plastic drainer, rubber gloves, shelves, and unsealed wet towel. Those sites should be focused and controlled according to control Points of sanitation standard operating Procedures. Also, periodic microbiological examination in addition to visual examination should be applied on those highly contaminated sites for reducing risk of foodborne disease outbreak at restaurants

A Study on Improving Installation Guideline of Facilities to Protect Groundwater Contamination: Applications of Packer Grouting to Contaminated Wells (지하수오염방지 시설기준의 개선에 관한 연구:지하수오염관정에의 팩커그라우팅 적용사례)

  • Choo, Chang-Oh;Ryu, Jong-Heum;Cho, Heuy Nam;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.293-304
    • /
    • 2013
  • Because the present groundwater law broadly regulates a simple and impractical guideline ignoring aquifer characters and geology, general purpose facilities for protection of groundwater contamination is still considered unsatisfactory to ensure groundwater resources. In recent, there have been growing attempts in the packer development as crucial techniques and devices for groundwater protection. This study investigated the application of packer grouting techniques to contaminated groundwaters of two well sites in the Andong and Yeongi areas, both of which revealed a satisfactory effect with improved water quality: 94% decrease in turbidity at the Andong area and 60% decrease in $NO_3$-N, respectively. Based on aquifer characters including geology, weathering depth, fracture pattern, hydraulic gradient, and the flow path of contaminants, the integrated properties of groundwater contamination should be evaluated and treated with the help of accurate analyses such as bore hole imaging and monitoring data. Packer grouting and casing on well to ensure the useful aquifer free of contaminant are expected to play important role in inhibiting the inflow of contaminants when adequately applied. Therefore it is concluded that these can serve as reliable tools in remediation and protection of contaminated groundwater as well as efficient utilization of groundwater.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

The Study for Practical use of Bioremediation Agent in Oil-Contaminated Area (해상유출유 오염지역에서의 미생물처리제 활용 방안 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.3-15
    • /
    • 2003
  • Recently more than 450 incidents of oil spill a year have occurred in nearshore of Korea, which caused unmeasurelable losses in fisheries and severe damage in marine ecosystem. Two approaches remain paramount in any response to marine oil spill : the enhancement of natural dispersion of the oil by using dispersants, and mechanical recovery using booms and skimmers. A technique currently receiving fresh attention is the enhancement of the natural bioremediation of oil through the application of micro-organisms and/or nutrient. Oil, like many natural substances, will biodegrade over a period of time into simple compounds such as carbon dioxide, water and biomass. Bioremediation is the term used to describe a range of processes which can be used to accelerate natural biodegradation. More specifically biostimulation is the application of nutrients, and bioaugremetation or seeding is the addition of microbes specially selected to degrade oil. Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.