• Title/Summary/Keyword: contaminated water

Search Result 1,325, Processing Time 0.025 seconds

Remediation of Heavy Metal Contaminated Soil by Washing Process (세척을 통한 중금속(Cd, Zn)으로 오염된 토양의 정화)

  • 백정선;현재혁;조미영;김수정
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2000
  • Several chemical washing procedures were applied to Zn and Cd contaminated soil. Batch and column tests were performed to determine the metal extraction efficiency as a function of pH and concentration. Washing efficiencies by water and NaOH are very low but those by HCI, EDTA and Oxalic acid are high. The most efficient washing occurs in case of using HCI because heavy metal is ionized easily at the condition of low pH. EDTA and Oxalic acid are also effective to extract Zn and Cd because they have a high complexation affinity for heavy metals forming active surface complexes. More Zn is released than Cd is and release trend is increased as pH is decreased and concentration of washing solution is increased. When heavy metal contaminated soil is remediated, HCI and EDTA are more effective to remove Zn than others are. Meanwhile HCI and Oxalic acid are more effective to remove Cd than others are.

  • PDF

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

A Study on Distribution of the Contaminated Sediments in Lake Paldang (팔당호의 오염퇴적물 분포 조사)

  • Oh, Hyeon-Ju;Hong, Jong-Youb;Lee, Sang-Deuk;Chung, Moon-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1295-1305
    • /
    • 2000
  • Status of the contaminated sediments in Lake Paldang was investigated. Sediment samples were taken at 34 points and analyzed in terms of ignition loss, CODer, total P and total N. The contamination level did not show any significant variation with depth of the sediments, which indicated the contaminants were recalcitrant. The type of P in the sediment was analyzed, and the sum of adsorbed P and NAI-P, that can be re-solubilized under the reductive condition, was found to be 20-30% of the total P. From the analysis of the water quality change along with the flowing path, it would be concluded that the effect of the sediments on the water quality is insignificant yet in Lake Paldang. However, long term analysis covering at least four seasons should be continued in order to get a more reliable conclusion. A depth profile map of the sediment in Lake Paldang was provided.

  • PDF

Application of Soil's Self-Decontamination Ability to Contaminated Ground (흙의 자체정화능력을 이용한 오염된 토양정화)

  • Jeong, Jin-Seob;Jhung, Jhung-Kwon;Kim, Tae-Hyung;Fang, Hsai-Yang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.632-638
    • /
    • 2006
  • There are numerous approaches available to cleanup a contaminated surface and subsurface ground currently in use, however, these methods all classify the decontamination after the contamination has penetrated into the soil masses and is costly. Unlike these approaches, in this study, utilization of soil's self-decontamination ability by rearranging and preplanning of the topographical features and surface and subsurface drainage systems for the potential contamination sites before or during contamination process has been considered as an another cleanup method. Step by step explanations on why and how to develop the self-decontamination procedure is proposed in detail. Two examples are presented including contaminated saltwater intrusion along a coastal region and control or prevention of radioactive toxic radon gas ($^{222}Rn$) in residential areas. The effectiveness of the proposed systems to these two examples using the soil's self-decontamination ability is well illustrated.

Occurrence of Thermophilic Campylobacter spp. Contamination on Vegetable Farms in Malaysia

  • Chai, L.C.;Ghazali, F.M.;Bakar, F.A.;Lee, H.Y.;Suhaimi, L.R.A.;Talib, S.A.;Nakaguchi, Y.;Nishibuchi, M.;Radu, S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1415-1420
    • /
    • 2009
  • The aim of the present study was to examine the prevalence of thermophilic Campylobacter spp. (Campylobacter jejuni and Campylobacter coli) in soil, poultry manure, irrigation water, and freshly harvested vegetables from vegetable farms in Malaysia. C. jejuni was detected in 30.4% and 2.7% of the soil samples, 57.1 % and 0% of the manure samples, and 18.8% and 3% of the vegetable samples from farm A and farm B, respectively, when using the MPN-PCR method. Campylobacter spp. was not found in any of the irrigation water samples tested. Therefore, the present results indicate that the aged manure used by farm A was more contaminated than the composted manure used by farm B. Mostly, the leafy and root vegetables were contaminated. C. coli was not detected in any of the samples tested in the current study. Both farms tested in this study were found to be contaminated by campylobacters, thereby posing a potential risk for raw vegetable consumption in Malaysia. The present results also provide baseline data on Campylobacter contamination at the farm level.

Combined TPH and BTEX Analytic Method to Identify Domestic Petroleum Products in Contaminated Soil (오염토양 내 석유제품 판별을 위한 TPH 및 BTEX 분석)

  • Lim, Young-Kwan;Na, Yong-Gyu;Kim, Jeong-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • The significance of maintaining the soil environment is gradually increasing owing to soil and underground water contamination by petroleum leak accidents. However, the purification of soil is an expensive and more time-consuming process than the purification of contaminated water and air. Moreover, determining the source and people responsible for soil pollution gets often embroiled in legal conflicts, further delaying the cleanup process of the contaminate site. Generally, TPH (total petroleum hydrocarbon) pattern analysis is used to determine the petroleum species and polluter responsible for soil contamination. However, this process has limited application for petroleum products with a similar TPH pattern. In this study, we analyze the TPH pattern and specific sectional ratio (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) of various domestic petroleum products to identify the petroleum product responsible for soil contamination. Also, we perform BTEX (benzene, toluene, ethyl benzene, xylene) quantitative analysis and determine B:T:E:X ratio using GC-MS. The results show that gasoline grade 1 and 2 have a similar TPH pattern but different BTEX values and ratios. This means that BTEX analysis can be used as a new method to purify soil pollution. This complementary TPH and BTEX method proposed in this study can be used to identify the petroleum species and polluters present in the contaminated soil.

Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil (개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

Introduction to the Strategic Sampling Approaches to Construct Optimal Conceptual Model of a Contaminated Site (오염부지 최적 개념모델 수립을 위한 전략적 샘플링 기법 소개)

  • Park, Hyun Ji;Kim, Han-Suk;Yun, Seong-Taek;Jo, Ho Young;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.28-54
    • /
    • 2020
  • Even though a systematic sampling approach is very crucial in both the general and detailed investigation phases to produce the best conceptual site model for contaminated sites, the concept is not yet established in South Korea. The U.S. Environmental Protection Agency (EPA) issued the 'Strategic Sampling Approaches Technical guide' in 2018 to help environmental professionals choose which sampling approaches may be needed and most effective for given site conditions. The EPA guide broadly defines strategic sampling as the application of focused data collection across targeted areas of the conceptual site model (CSM) to provide the appropriate amount and type of information needed for decision-making. These strategic sampling approaches can prevent the essential data from missing, minimize the uncertainty of projects and secure the data which are necessary for the important site-decisions. Furthermore, these provide collaborative data sets through the life cycle phases of projects, which can generate more positive proofs on the site-decisions. The strategic sampling approaches can be divided by site conditions. This technical guide categorized it into eight conditions; High-resolution site characterization in unconsolidated environments, High-resolution site characterization in fractured sedimentary rock environments, Incremental sampling, Contaminant source definition, Passive groundwater sampling, Passive sampling for surface water and sediment, Groundwater to surface water interaction, and Vapor intrusion. This commentary paper introduces specific sampling methods based on site conditions when the strategic sampling approaches are applied.

Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process (황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리)

  • Hyuk Sung Chung;Nguyen Quoc Bien;Jae Young Choi;Inseong Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.