• Title/Summary/Keyword: contaminated water

Search Result 1,322, Processing Time 0.034 seconds

The Extension of Tofu Shelf-Life with Water-Soluble Degraded Chitosan as Immersion Solution (수용성 키토산분해물질을 침지액으로 이용한 두부의 저장성 증대)

  • Chun, Kie-Hwan;Kim, Byung-Yong;Son, Tae-Il;Hahm, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.476-481
    • /
    • 1997
  • For the effect of water-soluble degraded chitosan on the shelf-life of tofu, sterilized distilled water, 0.5% degraded chitosan, 0.5% fumaric acid and 0.5% lactic acid used as an tofu-immersion solutions were investigated by microbial counts, pH, and turbidity during the periods of storage at $4^{\circ}C$. After 2 weeks storage, total aerobic microbial counts in tap water and sterilized distilled water used as an immersion solution were $3.8\;{\times}\;10^8$ and $1.8\;{\times}\;10^8\;CFU/mL$, respectively. In 0.5% fumaric acid and 0.5% lactic acid immersion solutions, the microbial counts were around $10^7\;CFU/mL$ after 2 weeks while the microbial population in 0.5% water-soluble degraded chitosan were, however, $1.6\;{\times}\;10^5\;CFU/mL$ after 2 weeks and $1.7{\times}10^7\;CFU/mL$ after 3 weeks. The lag phase of initial contaminated microbes in 0.5% degraded chitosan solution was longer than those of other treatments. The addition of 0.5% fumaric acid and 0.5% lactic acid decreased the initial pH to pH 5.0, while those of tap water, sterilized distilled water and 0.5% degraded chitosan stabilized the immersion solution at around pH 7.2. All initial pH values were decreased during storage and then slowly increased as storage time was increased. The turbidities in all treatments were increased during storage, but the addition of 0.5% degraded chitosan showed the lowest change, compared to other treatments, showing that the water-soluble degraded chitosan has a good antimicrobial effect and has a potential use to extend the shelf-life of tofu product.

  • PDF

The Effect of Bottom ash in Reducing Cadmium Phytoavailability in Cadmium-contaminated Soil (중금속 오염 농경지 토양에서 바닥재 시용에 의한 카드뮴 식물이용성 저감효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Yun, Sung Wook;Kim, Sang Yoon;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.152-157
    • /
    • 2016
  • BACKGROUND: Since bottom ash (BA) contains considerable amounts of CaO and MgO, it could be a useful amendment to increase soil pH and to immobilize cadmium (Cd). This study was conducted to evaluate effect of BA application in reducing Cd phytoavailability.METHODS AND RESULTS: Bottom ash was applied at the rate of 0, 20, 40, and 80 Mg/ha to Cd contaminated soil, and then lettuce was cultivated under field condition. soil pH and net negative charge increased slightly with increasing BA application; however, there was no statistical difference among the rates. Water soluble, exchangeable+acidic, reducible, and oxidizable fraction of Cd decreased with increasing bottom ash application rate, whereas residual fraction of Cd increased with increasing bottom ash application rate. Lettuce yield increased with rate of bottom ash up to 40 kg/ha. Visual evidences of cadmium toxicity and growth inhibition were not found during lettuce cultivation.CONCLUSION: Bottom ash was effective to reduce phytoextractability of Cd and to increase lettuce yield. Conclusively, BA could be a good soil amendment to reduce Cd phytoavailability in contaminated arable soil.

Detection of Megalocytivirus in shellfish using PCR with various DNA extraction methods (다양한 PCR용 DNA 추출법에 의한 패류 내 Megalocytivirus의 검출)

  • Kim, Jin-Woo;Cho, Mi-Young;Jin, Ji-Woong;Kim, Ki-Hong;Jeong, Hyun-Do;Kim, Kwang-Il
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • In analysis of DNA viruses from the contaminated shellfish using PCR, preparation method of template DNA is an important factor to get enough copy number of viruses. In this study, we evaluated the efficiency of PCR template of Megalocytivirus (sT50mg-D) DNA obtained from 50 mg digestive gland homogenate of oyster using commercial method, and compared with that obtained from 5 g of the same tissues (T5g-D) after PEG precipitation procedures of virus. Both templates DNA suspended in the same volume of distilled water showed positive results by primary PCR with 35 cycles, and the presence of Megalocytivirus was confirmed in oysters collected from cultured farms in Korea. Moreover, PCR with sT50mg-D allowed us to discriminate the contaminated oyster individually, that can not be done in PCR with T5g-D prepared from the mixture of three different individual oyster to get 5 g digestive gland homogenate. In quantitative analysis with real time PCR, Megalocytivirus concentrations in 50 ${\mu}l$ templates prepared using 0.5~50 mg of one positive sample were appeared in the range 6.14E+00~1.2E+02/${\mu}l$. We were not able to get positive result using template DNA contained less than 6.14E+00 copies. Consequently, 2-step PCR performed with DNA extracts from oyster homogenate of small amount (sT50mg-D) i) was enough to detect the contaminated Megalocytivirus in shellfish, ii) allowed us to do the analysis for individual shellfish rather than mixture of several shellfish and iii) showed the presence of Megalocytivirus in oyster from Korea.

The effect of silane treatment timing and saliva contamination on shear bond strength of resin cement to porcelain (Silane의 처리시기와 타액오염이 도재-레진 시멘트의 전단 결합강도에 미치는 영향)

  • Ro, Young-Seon;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • Statement of problem: Porcelain veneers have become a popular treatment modality for aesthetic anterior prosthesis. Fitting porcelain veneers in the mouth usually involve a try-in appointment, which frequently results in salivary contamination of fitting surfaces. Purpose: An in vitro study was carried out to investigate the effect of silane treatment timing and saliva contamination on the resin bond strength to porcelain veneer surface. Material and methods: Cylindrical test specimens (n=360) and rectangular test specimens (n=5) were prepared for shear bond test and contact angle analysis. Whole cylindrical specimens divided into 20 groups, each of which received a different surface treatment and/or storage condition. The composite resin cement stubs were light-polymerized onto porcelain adherends. The shear bond strengths of cemented stubs were measured after dry storage and thermocycling (3,000 cycles) between 5 and $55^{\circ}C$. The silane and their reactions were chemically monitored by using Fourier Transform Infrared Spectroscopy analysis (FTIR) and contact angle analysis. One-way analysis of variance (ANOVA) and Dunnett's multiple comparison were used to analyze the data. Results: FT-IR analysis showed that salivary contamination and silane treatment timing did not affect the surface interactions of silane. Observed water contact angles were lower on the saliva contaminated porcelain surface and the addition of 37% phosphoric acid for 20 seconds on saliva contaminated porcelain increased the degree of contact angle. Silane applied to the porcelain, a few days before cementation, resulted in increasing the bond strength after thermocycling. Conclusion: Within the limitation of this study, it can be concluded that it would be better to protect porcelain prosthesis before saliva contamination with silane treatment and to clean the contaminated surface by use of phosphoric acid.

THE EFFECT OF WASHING PHOSPHORIC ACID ETCHANT ON SHEAR BOND STRENGTH OF AN ORTHODONTIC ADHESIVE (인산 부식액의 수세가 교정용 접착레진의 전단결합강도에 미치는 영향)

  • Kim, Hee-Kyun;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.497-507
    • /
    • 1996
  • The aim of present study in vitro was to evaluate and compare the effects of different washing times of enamels etched with low phosphoric acid solution which makes unsoluble salts and etched but contaminated with saliva on shear bond strength of an orthodontic adhesive to enamel, and to observe the washing effect on the etched enamel surface by scanning electron microscope. All brackets were bonded with Mono-$Lok2^{TM)}$) on the labial surface of extracted human bicuspids after etching with $20w/w\%\;and\;37w/w$ and phosphoric acid solution for 60seconds and then washing for 0,5,10 and 20seconds respectedly. After etching with $37w/w\%$ phosphoric acid solution and contaminating with saliva for 30seconds and then washing for 0,5,20 and 30seconds and re-etching for 10seconds. After 24hours passed in the $37^{\circ}C$ water bath, the shear bond strengths were measured on Universal Test Machine. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. There was no significant differences between (p>0.05) shear bond strength of bonded brackets with 5, 10, 20seconds washing etched enamel using $37{\%}w/w{\%}$ phosphoric acid solution. 2. The shear bond strength of bonded brackets with $20w/w\%$ phosphoric acid and then washing for 5seconds showed bonded strength durable to occlusal force but its coefficiency score was high and etched surface was not cleaned completely and therefore it was assumed that its clinical application is not applicable. 3. There was no significant differences between (p>0.05) shear bond strengths of bonded brckets with washing for 5seconds etched enamel using $37w/w\%$ phosphoric acid solution and 10,20 seconds washing etched enamel using $20w/w\%$ phosphoric acid solution. 4. The shear bond strength of washing for 5seconds etched enamel which was contaminated with saliva showed sufficient bonded strength durable to occlusal force but its coefficiency score was high and therefore its clinical application was not applicable. 5. After etching, the sample contaminated with saliva showed the sufficient shear bond strength even washing 20seconds without re-etching.

  • PDF

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF

Geochemical and Environmental Isotope Study on the Groundwater from the Youngcheon Area, Gyeongbuk Province (경북 영천지역 지하수의 지구화학 및 환경동위원소 연구)

  • Kim, Geon-Young;Koh, Yong-Kwon;Bae, Dae-Seok;Won, Chong-Ho;Jung, Do-Hwan;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.35-53
    • /
    • 2007
  • Geochemical and isotope studies on the groundwater system of the Youngcheon area were carried out. Most groundwaters belong to Ca-$HCO_3$ and Ca-$SO_4$ types and some groundwaters belong to Na-$HCO_3$ type. Geochemical characteristics of these groundwaters were mainly affected by their basement rocks around the boreholes. High $SO_4$ content of groundwater is the result of reaction with sulfate or sulfide minerals in the host rock. Ca was originated from the carbonate minerals in the sedimentary rock. After the groundwater was saturated with calcite, the Na-$HCO_3$ type groundwaters were evolved by the reaction with plagioclase for a relatively long residence time. This explanation was supported by low tritium contents of Na-$HCO_3$ type groundwaters. ${\delt}a^{18}O$ and ${\delta}D$ data indicate that the groundwaters are of meteoric water origin and there was no difference between the various types of waters. Grondwaters from the boreholes BH-1, BH-9 and BH-12 showed the geochemical and isotopic characteristics of deep groundwater. Most borehole groundwaters except them did not show the systematic geochemical variations with sampling depth indicating that the shallow and deep groundwaters were mixed with each other throughout the study area. The results of water quality analysis indicate that the study area is highly contaminated by the introduction of agricultural sewage.

Decontamination of Waste Water Polluted with Phenolic and Anilinic Compounds Using Plant Materials (식물체를 이용한 Phenol 및 Aniline성 폐수의 정화)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.228-233
    • /
    • 2000
  • This study was carried out to estimate the possibility on the removal of phenols and anilines, which were contained in pulp or dye waste water, and the reusability of plant materials, shepherd's purse and turnip. Most of phenols catalyzed with shepherd's purse were removed more than 90% in the presence of $H_2O_2$, and the removal was ranged from 53.1% for 2,6-DMP to more than 99% for 2,4,6-TCP when turnip was used as catalysts. The removal of anilines catalyzed with shepherd's purse was ranged from 42.2% for 2-CA to 78.7% for 3,4-DCA in the presence of $H_2O_2$, and in case of turnip, from 31.5% for 2-CA to 90.0 % for 2,4-DCA. The reuse of plant materials was proved to be possible for not only the batch method but also the continuous method. No decreasing removal was observed during 30 cycles in waster water contaminated with 100ppm of 2,4-DCP. However, it was observed that the removal was decreased with increasing the number of cycles in higher concentration of 2,4-DCP(800ppm). Therefore, it could be suggested that the number of reusable cycles depends on the initial concentration of substrates.

  • PDF

Acid Mine Drainage and Heavy Metal Contamination of Stream Sediments in the Okdongcheon Stream, Sangdong Area, South Korea (강원도 상동지역 옥동천의 광산 산성수 및 하상퇴적물의 중금속 오염)

  • Cheong, Young Wook;Thornton, Iain
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.101-113
    • /
    • 1994
  • Geochemical investigations based on measurements of water parameters and sampling of stream sediments have been carried out, in the Okdongcheon stream and its tributaries in the Sangdong area of South Korea. There are two main problems occurring in the Okdongcheon stream: an acid mine drainage in the upper reaches and toxic trace metal contamination of the stream sediments mainly in the lower reaches. Acid mine water originating from coal mining was neutralized at the confluence of the Cheonpyongcheon stream whilst suspended solids due to flocculation of iron in water caused turbidity which was undesirable. Sediments in the Okdongcheon stream have been contaminated by mining activites. Iron was heavily concentrated in sediments in the upper Okdongcheon whilst toxic trace metals including Pb, Cu, Zn, Co, Cd, As and Bi were accumulated in sediments at stations draining metallic mining areas and near the tailings dam. There is now a requrement to neutralise the acid mine drainage and to use site-specific analysis of biological communities to ensure the conservation and preservation of aquatic organisms.

  • PDF