• Title/Summary/Keyword: contaminant's distribution

Search Result 23, Processing Time 0.096 seconds

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

지하 하수터널 주변의 오염물 거동해석

  • 정일문;한일영;차성수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.327-330
    • /
    • 2002
  • In this study, analyses of contaminant transport are peformed to evaluate the diffusion effect of A sewage tunnel. First, Crank's analytical method is used to measure the concentration change of contaminant with time and space. Two dimensional numerical analysis is performed to measure concentration distribution of contaminant. Both methods show that the diffusion effect is little even after 500 years. This means that when flow converges into the tunnel, the environmental effect of contaminant in tunnel is not serious because there is no advection occurs.

  • PDF

A Study on the Improvement of Accuracy in Mapping the Distribution of the Emission Volume of Air Pollution Using GIS (GIS를 이용한 대기오염 배출량 분포도의 정확도 향상에 관한 연구)

  • 최진무
    • Spatial Information Research
    • /
    • v.6 no.1
    • /
    • pp.65-76
    • /
    • 1998
  • Air contaminant density must be inferred exactly to manage air pollution. Each land use of air pollution source is duplicated in the existing air contaminant distribution because the resolution of the land use map is low. The purpose of this study is to understand how the land use map is used to determine effectively in the distribution calculation of the emission volume and the inference of air contaminant density, as it is made in a high resolution. The major findings are as follows : In this study, as to making a high resolution($28.5m{\times}28.5m$) map of land use with GIS, each air pollution source is not duplicated spatially and land use can be reflected effectively. In Seoul, each air contaminant density was inferred (using a TCM-2 model) with the existing distribution map of emission volume, whose resolution is $1km{\times}1km$, and the new distribution map of emission volume, whose resolution is $28.5km{\times}28.5km$. According to the result, the inference value of the new distribution map was more similar to the actual value of an automatic survey network.

  • PDF

Identification of Contaminant Injection in Water Distribution Network

  • Marlim, Malvin Samuel;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.114-114
    • /
    • 2020
  • Water contamination in a water distribution network (WDN) is harmful since it directly induces the consumer's health problem and suspends water service in a wide area. Actions need to be taken rapidly to countermeasure a contamination event. A contaminant source ident ification (CSI) is an important initial step to mitigate the harmful event. Here, a CSI approach focused on determining the contaminant intrusion possible location and time (PLoT) is introduced. One of the methods to discover the PLoT is an inverse calculation to connect all the paths leading to the report specification of a sensor. A filtering procedure is then applied to narrow down the PLoT using the results from individual sensors. First, we spatially reduce the suspect intrusion points by locating the highly suspicious nodes that have similar intrusion time. Then, we narrow the possible intrusion time by matching the suspicious intrusion time to the reported information. Finally, a likelihood-score is estimated for each suspect. Another important aspect that needs to be considered in CSI is that there are inherent uncertainties, such as the variations in user demand and inaccuracy of sensor data. The uncertainties can lead to overlooking the real intrusion point and time. To reflect the uncertainties in the CSI process, the Monte-Carlo Simulation (MCS) is conducted to explore the ranges of PLoT. By analyzing all the accumulated scores through the random sets, a spread of contaminant intrusion PLoT can then be identified in the network.

  • PDF

Development Of A Windows-Based Predictive Model For Estimating Sediment Resuspension And Contaminant Release From Dredging Operations

  • Je, Chung-Hwan;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.137-146
    • /
    • 2000
  • A windows-based software package, named DREDGE, is developed for estimating sediment resuspension and contaminant release during dredging operations. DREDGE allows user to enter the necessary dredge information, site characteristics, operational data, and contaminant characteristics, then calculates an array of concentration using the given values. The program mainly consists of the near-field models, which are obtained empirically, for estimating sediment resuspension and the far-field models, which are obtained analytically, for suspended sediment transport. A linear equilibrium partitioning approach is applied to estimate particulate and dissolved contaminant concentrations. This software package which requires only a minimal amount of data consists of three components; user input, tabular output, and graphical output. Combining the near-field and far-field models into a user-friendly windows-based computer program can greatly save dredge operator's, planners', and regulators' efforts for estimating sediment transports and contaminant distribution.

  • PDF

The Study on Optimum Ventilation System during Long Tunnel Construction (굴착중인 장대터널 내 최적의 환기시스템에 관한 연구)

  • Lim, Han-Uk;Oh, Byung-Hwa
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.3-15
    • /
    • 2006
  • To determine the optimum ventilation systems during long tunnel excavation, the velocity vector profile and the contaminant's distribution at working place are studied using 2-D, 3-D numerical analysis. The main results can be summarized as follow; In case of long tunnels, blower-exhaust-mixture types which enable to use soft blast ducts is most appropriate in terms of ventilation and economical efficiency. Of the same ventilation types, ventilation efficiency has a difference according to blast ducts and the distance between fan and working place. The 3-D numerical result shows that arranging blower and exhaust ducts in the right and left corners of the tunnel respectively is effective to discharge contaminant. The result of the real measurement shows that CO concentration can be reduced to below 50 ppm, which is regulation value, as 16-minutes fan operation goes on.

  • PDF

1D contaminant transport using element free Galerkin method with irregular nodes

  • Rupali, S.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.203-221
    • /
    • 2016
  • The present study deals with the numerical modelling for the one dimensional contaminant transport through saturated homogeneous and stratified porous media using meshfree method. A numerical algorithm based on element free Galerkin method is developed. A one dimensional form of the advectivediffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the available results in the literature. A detailed parametric study is conducted to examine the effect of certain key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of layer is studied on the concentration of the contaminant.

Migration of calcium hydroxide compounds in construction waste soil

  • Shin, Eunchul;Kang, Jeongku
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • Migration of leachate generated through embankment of construction waste soil (CWS) in low-lying areas was studied through physical and chemical analysis. A leachate solution containing soluble cations from CWS was found to have a pH above 9.0. To determine the distribution coefficients in the alkali solution, column and migration tests were conducted in the laboratory. The physical and chemical properties of CWS satisfied environmental soil criteria; however, the pH was high. The effective diffusion coefficients for CWS ions fell within the range of $0.725-3.3{\times}10^{-6}cm^2/s$. Properties of pore water and the amount of undissolved gas in pore water influenced advection-diffusion behavior. Contaminants migrating from CWS exhibited time-dependent concentration profiles and an advective component of transport. Thus, the transport equations for CWS contaminant concentrations satisfied the differential equations in accordance with Fick's 2nd law. Therefore, the migration of the contaminant plume when the landfilling CWS reaches water table can be predicted based on pH using the effective diffusion coefficient determined in a laboratory test.

Investigation on Flashover Development Mechanism of Polymeric Insulators by Time Frequency Analysis

  • Muniraj, C.;Krishnamoorthi, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1503-1511
    • /
    • 2013
  • This paper deals with the analysis of leakage current characteristics of silicone rubber insulator in order to develop a new condition monitoring tool to identify the flashover of outdoor insulators. In this work, laboratory based pollution performance tests are carried out on silicone rubber insulator under ac voltage at different pollution levels and relative humidity conditions with sodium chloride (NaCl) as a contaminant. Min-Norm spectral analysis is adopted to calculate the higher order harmonics and Signal Noise Ratio (SNR). Choi-Williams Distribution (CWD) function is employed to understand the time frequency characteristics of the leakage current signal. Reported results on silicone rubber insulators show that the flashover development process of outdoor polymer insulators could be identified from the higher order harmonics and signal noise ratio values of leakage current signals.

Investigations of Accelerated Aged Polymeric Insulators Using Partial Discharge Signal Measurement and Analysis

  • Mekala, K.;Chandrasekar, S.;Ravindran, R. Samson
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.299-307
    • /
    • 2015
  • Reduction in pollution performance of polymeric insulators, aged due to water absorption stress and thermal stress, is a major threat to the reliable operation of power transmission and distribution system. Formation of partial discharges on the surface of wet polluted insulator plays a major role in determining the life time and pollution performance of outdoor polymeric insulators. However, reports on partial discharge characteristics of water absorption stress aged and thermal aged polymeric insulators are scanty. This paper discusses the pollution performance characteristics of accelerated aged polymeric insulators using the advanced ultra wide band PD signal measurement and analysis. Laboratory experiments on accelerated aged polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. PRPD pattern and Time-Frequency map analysis of PD signals were carried out. From the results, it can be speculated that PD analysis is a well suited technique to understand the pollution performance of aged polymeric insulators.