• Title/Summary/Keyword: containment performance

Search Result 148, Processing Time 0.026 seconds

Ploidy status of progeny from the crosses between tetraploid males and diploid females in mud loach (Misgurnus mizolepis)

  • Nam, Yoon-Kwon;Kim, Dong-Soo
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.40-40
    • /
    • 2003
  • DNA content of the sperm of tetraploid mud loach (Misgurnus mizolepis) males and the ploidy status of progenies generated by crossing tetraploid males with diploid females are described. Reproductive performance of the induced adult tetraploid males ranged from sterility to fertility. Of 48 tetraploid males tested, 12 were sterile but the other 36 produced functional sperm. Of these 36, 26 produced haploid sperm, which on fertilizing the haploid eggs, generated diploid progenies. Seven tetraploid males were mosaics in their sperm, as indicated by the production of diploid, aneuploid and/or triploid offspring. Only 3 males produced diploid sperm rendering the production of all-triploid progenies. The DNA content of sperm of a tested tetraploid male was consistent throughout the 3 progeny tests, i.e. the haploid sperm-producing 4n males persisted to produce the haploid sperm only likewise the diploid sperm producing4n males consistently produced the diploid sperm only, when progeny testing was extended to 3 successive but alternate years. Hence, a careful and direct examination of the DNA profile of sperm from tetraploid males is a pre-requisite for reproductive containment of genetically modified fish.

  • PDF

Numerical Evaluation of the Cooling Performance of a Core Catcher Test Facility

  • Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.

Study on the Treatment of Premature Ejaculation in Oriental Medicine (조루증(早漏症) 치료(治療)의 한의학적(韓醫學的) 접근방법(接近方法)에 관(關)한 연구(硏究))

  • Song, Un-Yong;Kim, Hyeong-Kyun;Lee, Eon-Jeong;Song, Bong-Keun
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.444-469
    • /
    • 1998
  • Premature ejaculation is the most common sexual dysfunction seen in the male, and it is found in 30 to 50% adult male population. It is defined as the inability to control the ejaculatory process for a sufficient length of time during intravaginal containment to satisfy his partner in at least fifty percent of his coital connections The majority of men with premature ejaculation have underlying psychologic origin of performance-anxiety type, but it is not always psychogenic and may also be a presenting symptom in certain organic disorders. In oriental medicine, the point of treatment of premature ejaculation is recovery of the good ejaculatory control, and the treatment can be approached in three ways as psychological therapy involving behavioral therapy, herb drugs, and acupuncture. This study has aims to investigate and summarize the current trend of treatment for premature ejaculation so as to suggest the effective and available way to treat the disease.

  • PDF

Thinning Effect Due to Bentonite Migration on Performance of GCL (벤토나이트 유실로 인한 협착이 GCL 거동에 미치는 영향)

  • Choi, Hangseok;Lee, Chulho;Stark, Timothy D.
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • Recently, geosynthetic clay liners (GCLs) have increasingly been used to replace compacted clay liners (CCLs) in composite liner systems. Since the introduction of GCLs to waste containment facilities, one of the major concerns about their use has been the hydraulic equivalency to CCLs as required by regulations. Laboratory test results and more recently field observations show that the thickness, or mass per unit area, of hydrated bentonite in a GCL can decrease under normal stress, especially around zones of stress concentration or nonuniform stresses, such as a rock or roughness in the subgrade, a leachate sump, or wrinkles in an overlying geomembrane. This paper presents field case histories that confirm the laboratory observations of bentonite migration and the effect of bentonite migration on hydraulic equivalency and contaminant transport through a GCL.

  • PDF

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han;Li, Yabing;Xiao, Jianjun;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1310-1317
    • /
    • 2017
  • GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

A Study on Threat Containment through VDI for Security Management of Partner Companies Operating at Industrial Control System Facility

  • Lee, Sangdo;Huh, Jun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.491-494
    • /
    • 2019
  • The results from the analysis of recent security breach cases of industrial control systems revealed that most of them were caused by the employees of a partner company who had been managing the control system. For this reason, the majority of the current company security management systems have been developed focusing on their performances. Despite such effort, many hacking attempts against a major company, public institution or financial institution are still attempted by the partner company or outsourced employees. Thus, the institutions or organizations that manage Industrial Control Systems (ICSs) associated with major national infrastructures involving traffic, water resources, energy, etc. are putting emphasis on their security management as the role of those partners is increasingly becoming important as outsourcing security task has become a common practice. However, in reality, it is also a fact that this is the point where security is most vulnerable and various security management plans have been continuously studied and proposed. A system that enhances the security level of a partner company with a Virtual Desktop Infrastructure (VDI) has been developed in this study through research on the past performances of partner companies stationed at various types of industrial control infrastructures and its performance outcomes were statistically compiled to propose an appropriate model for the current ICSs by comparing vulnerabilities, measures taken and their results before and after adopting the VDI.

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam (튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.313-325
    • /
    • 2001
  • Tubular bridge rail was developed to restrain and redirect a 14ton van-type truck. The developed bridge rail permits better visibility than concrete safety-shape bridge rail, and it has better structural adequacy than the existing steel and aluminum bridge rails in Korea. The new bridge rail consists of a tubular thrie beam(TTB) rail and a steel guard rail, which are connected to composite posts. The TTB shape provides both better containment of diverse bumper heights and more tight fit between the ends of bridge rail and roadside guardrails than the existing bridge rail sections currently used in Korea. Making composite post by filling concrete inside the steel pipe of the same size as are used for the roadside guardrail post was found to be more efficient in increasing the stiffness and ultimate strength than simply increasing the size of the steel pipe. The system was crash-tested for the impact condition of 14ton-80km/h-$15^{\circ}$, and it satisfied all evaluation criteria set forth in NCHRP Report 350 for a Test Level 4 safety appurtenance. Acceptable performances were obtained in computer simulations for the impact condition of S2.

  • PDF