• 제목/요약/키워드: containment performance

검색결과 147건 처리시간 0.028초

The Plant-specific Impact of Different Pressurization Rates in the Probabilistic Estimation of Containment Failure Modes

  • Ahn, Kwang-ll;Yang, Joon-Eon;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.154-164
    • /
    • 2003
  • The explicit consideration of different pressurization rates in estimating the probabilities of containment failure modes has a profound effect on the confidence of containment performance evaluation that is so critical for risk assessment of nuclear power plants. Except for the sophisticated NUREG-1150 study, many of the recent containment performance analyses (through Level 2 PSAs or IPE back-end analyses) did not take into account an explicit distinction between slow and fast pressurization in their analyses. A careful investigation of both approaches shows that many of the approaches adopted in the recent containment performance analyses exactly correspond to the NUREG-1150 approach for the prediction of containment failure mode probabilities in the presence of fast pressurization. As a result, it was expected that the existing containment performance analysis results would be subjected to greater or less conservatism in light of the ultimate failure mode of the containment. The main purpose of this paper is to assess potential conservatism of a plant-specific containment performance analysis result in light of containment failure mode probabilities.

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

소형 원자로용 모듈화 격납구조의 내진성능 분석 (Analysis of Seismic Performance of Modular Containment Structure for Small Modular Reactor)

  • 박우룡;임성순
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.409-416
    • /
    • 2020
  • 전세계적으로 다양한 규모의 지진이 계속하여 발생하고 있으므로 원자로용 격납구조가 구조적인 건전성을 유지하기 위해서는 내진성능의 확보가 필수적이다. 따라서 소형 원자로용 모듈화 격납구조의 경우에도 내진성능의 분석이 필요하다. 본 연구에서는 소형 원자로용 모듈화 격납구조의 내진성능 분석을 위해 콘크리트 모듈 간 접촉면과 긴장재를 반영한 유한요소 모델을 작성하여 고유진동해석과 지진해석을 수행한다. 이를 통해 입력지진파에 의한 모듈화 격납구조의 변위, 응력 및 연결부 접촉면 갭 크기의 변화특성을 분석한다. 그리고 긴장력, 연결부 접촉면 마찰계수 및 입력지진파의 변화가 내진성능에 미치는 영향을 분석한다. 비교를 위해 일체화 격납구조의 내진성능도 분석한다. 긴장재의 긴장력과 모듈 연결부 접촉면의 마찰력에 의한 합성효과로 모듈화 격납구조는 발생 가능성이 가장 높은 1, 2차 고유모드에서 일체화 격납구조와 유사한 횡방향 동적거동을 한다. 긴장재의 긴장력과 연결부 접촉면의 마찰력에 의한 합성효과가 충분히 발휘될 경우, 연결부를 갖는 모듈화 격납구조에서도 일정수준 이상의 내진성능이 확보된다. 연결부 접촉면 재질을 마찰계수가 더 큰 재료로 바꿀 경우 추가적인 내진성능 향상이 기대된다.

Parametric analyses for the design of a closed-loop passive containment cooling system

  • Bang, Jungjin;Hwang, Ji-Hwan;Kim, Han Gon;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1134-1145
    • /
    • 2021
  • A design parameter study is presented for the closed-loop type passive containment cooling system (PCCS) which is equipped with two heat exchangers: one installed at the inside of the containment and the other submerged in the water pool at the outside of the containment. A GOTHIC code model for PCCS performance analyses was set up and the design parameters such as the heat exchanger sizes, locations, and water pool tank volumes were analyzed to investigate the feasibility of installing this type of PCCS in PWRs like OPR-1000 being operated in Korea. We identified the size of the circulation loop and heat exchangers as major design parameters affecting the performance of PCCS. The analyses showed that the heat exchangers in the inside of the containment would be more influential on the heat removal capability of PCCS than that installed in the water pool at the outside of the containment. Hence, it was recommended to down-size the heat exchangers in the water pool to optimize PCCS without compromising its performance. Based on the parametric study, it was demonstrated that a closed-loop type PCCS could be designed sufficiently compact for installation in the available space within the containment of PWRs like OPR-1000.

Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

  • Lin, Feng;Li, Hongzhi
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1079-1089
    • /
    • 2017
  • Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8-1.1g and 1.2-1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

격납용기 성능해석을 위한 영향도에 관한 연구 (A Study on the Influence Diagrams for the Application to Containment Performance Analysis)

  • Park, Joon-Won;Jae, Moon-Sung;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.129-136
    • /
    • 1996
  • 영향도를 이용하여 영광 3, 4호기의 격납용기 성능해석을 수행하였다. 기존의 사상수목기법을 응용한 격납용기 성능해석은 사건들 사이의 의존 관계를 명확히 나타내기 어렵고, 사고진행사상수목(APET) 에서 알 수 있듯이, 격납용기와 같은 복잡한 계통에 적용할 경우 그 의존 관계를 그림으로조차 나타낼 수가 없으며, 또한, 의사결정문제를 다루는 데에도 많은 한계점을 지니고 있다. 이러한 문제점들을 해결하기 위하여 새로이 개발된 방법론인 영향도를 영광 3, 4호기 격납용기 성능해석과 사고관리방안을 평가하는 데에 적용하여 보았다. 본 연구에서 얻은 계산 결과와 기존의 사상수목 기법을 이용하여 계산한 결과와 비교한 결과, 거의 일치하는 계산 결과를 얻을 수 있으면서도 전체 격납용기 계통을 한 눈에 알기 쉽게 그림으로 나타낼 수 있었다. 또한, 향도가 의사결정문제를 일반적으로 다룰 수 있음을 보이기 위하여 본 방법론을 사고관리방안을 평가하는 데에 이용하여, 원자로 냉각계통 감압과 원자로공동 범람 방안, 두 가지 사고관리방안을 평가하여 보았다. 모두 초기 격납용기 파손에는 나쁜 영향을 주는 것으로 나 타났으나, 후기 격납용기 파손이나 중기발생기 세관파손에는 원자로공동범람과 일차계통 감압이 각각 어느 정도 긍정적인 영향을 미치는 것으로 나타났다. 본 연구를 통하여, 영향도를 이용한 격납응기 성능 해석은 사상수목기법을 이용한 분석에 비해, 진행되는 사건들 사이의 의존관계를 보다 명확히 나타낼 수 있고, 또한 영향도는 운전자의 의사결정을 잘 나타낼 수 있으므로 사고관리기법을 평가하는 데에도 쉽게 적용할 수 있음을 알 수 있다. 결론적으로, 본 연구에서는 영향도가 사상수목기법이 지니고 있는 여러 한계점들을 쉽게 극복하며 격납용기 성능해석에 적용할 수 있음을 보였다.

  • PDF

Investigation on damage assessment of fiber-reinforced prestressed concrete containment under temperature and subsequent internal pressure

  • Zhi Zheng;Yong Wang;Shuai Huang;Xiaolan Pan;Chunyang Su;Ye Sun
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2053-2068
    • /
    • 2023
  • Following a loss of coolant accident (LOCA), prestressing concrete containment vessels (PCCVs) may experience high thermal load as well as internal pressure. The high temperature stress would increase the risk of premature damage to the containment, which reduces the safety margin during the increasing internal pressure. However, current investigations cannot clearly address the issues of thermal-pressure coupling effect on damage propagation and thus safety of the containment. Thus, this paper offers three simple and powerful damage parameters to differentiate the severity of damage of the containment. Moreover, despite of the temperature action severely threatening the pressure performance of the containment, the research regarding the improvement of the resistant performance of the containment is quite scarce. Therefore, in this paper, a comprehensive comparison of damage propagation and mechanism between conventional and fiber-reinforced concrete (FRC) containments is performed. The effects of fiber characteristics parameters on damage propagation of structures following the LOCA are also specifically revealed. It is found that the proposed damage indices can properly indicate state of damage in the containment body and the addition of fiber can be used to obviously mitigate the damage propagation in PCCV considering the thermal-pressure coupling.

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Performance evaluation of an improved pool scrubbing system for thermally-induced steam generator tube rupture accident in OPR1000

  • Juhyeong Lee;Byeonghee Lee;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1513-1525
    • /
    • 2024
  • An improved mitigation system for thermally-induced steam generator tube rupture accidents was introduced to prevent direct environmental release of fission products bypassing the containment in the OPR1000. This involves injecting bypassed steam into the containment, cooling, and decontaminating it using a water coolant tank. To evaluate its performance, a severe accident analysis was performed using the MELCOR 2.2 code for OPR1000. Simulation results show that the proposed system sufficiently prevented the release of radioactive nuclides (RNs) into the environment via containment injection. The pool scrubbing system effectively decontaminated the injected RN and consequently reduced the aerosol mass in the containment atmosphere. However, the decay heat of the collected RNs causes re-vaporization. To restrict the re-vaporization, an external water source was considered, where the decontamination performance was significantly improved, and the RNs were effectively isolated. However, due to the continuous evaporation of the feed water caused by decay heat, a substantial amount of steam is released into the containment. Despite the slight pressurization inside the containment by the injected and evaporated steam, the steam decreased the hydrogen mole fraction, thereby reducing the possibility of ignition.

Proposal and Analysis of Hydrogen Mitigation System Guiding Hydrogen in Containment Building

  • Park, Kweonha;Lee, Khor Chong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.516-521
    • /
    • 2015
  • This study is about a hydrogen mitigation system in a containment building like an offshore or a nuclear plant. A hydrogen explosion is possibly happened after condensation of steam if hydrogen releases with steam in a containment buildings. Passive autocatalytic recombiner is the one of the measures, but the performance of this equipment is not sure because the distribution of hydrogen is very irregular and is not predicted correctly. This study proposes a new approach for improving the hydrogen removing performance with hydrogen-guiding property. The steam is simulated and analysed. The results show that the shallow air containment reduced over 55% of the released hydrogen and the deep air containment type reduces over 80% of released hydrogen.