• 제목/요약/키워드: contact surface

Search Result 4,583, Processing Time 0.036 seconds

Simulation for Contact Angle of Droplet on Riblet Surface

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.202-206
    • /
    • 2017
  • In this study, the hydrophobicity properties for riblet surfaces that replicate shark skin are simulated. Riblet surfaces with surface roughness on riblets are generated numerically based on the measured data of real shark skin. We assumed that a rib on a scale is hemi-elliptical surface. The surface used in the simulation for the calculation of contact angle is composed of 9 scales like checkerboard type with a roughness. The contact angle of a water droplet can be calculated using the Wenzel equation and Cassie-Baxter equation for the generated riblet surfaces. The variation of contact angles with a fractional depth of penetration for the generated shark skin surfaces without and with coatings is demonstrated in the condition of solid-air-water. The results show that the contact angle for the surface without coating decreases with an increase of the fractional depth of penetration more drastically than that for the surface with coating. We compared the experimental and simulated results. It is shown that the measured contact angles of the shark skin template and the shark skin replica are within the simulated results. Therefore the contact angle of water droplet for rough surfaces can be estimated by the developed numerical method in this study.

접촉식 시일장치의 밀봉 접촉면 형상에 대한 최적화 설계연구 (Optimization Design on the Sealing Surface Profiles of Contacting Seal Units)

  • 김청균
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.761-766
    • /
    • 2011
  • In this study, the optimized design profiles between a seal ring and a seal seat of contacting seal units has been proposed based on the FEM computed results. The maximum temperatures, the thermal distortions in axial and radial directions, and maximum contact normal stresses between a seal ring and a seal seat have been analyzed for various contact sealing profiles. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary sealing components. The seal surface model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a seal seat. This model with small contact surface of a seal ring produces high friction heating and contact stress. But the model III produces very small deformations of contacting sealing surface because of high convection heat transfer by cooling water circulation around the seal ring surface. Thus, the analysis results recommend a short width of a primary sealing unit rather than a big width of contact surfaces of contacting seal units for reducing a leakage and axial deformation of primary seal components.

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

실제 디스크 표면 데이터에 대한 접촉 슬라이더의 동적 안정성 해석 (Analysis of Dynamic Characteristics of Contact Slider Over Practical Disk Surface)

  • 박경수;전정일;박영필;박노철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.160-165
    • /
    • 2002
  • The flying height of contact slider is determined by vertical and pitching motions. This paper performed the computer simulation for flying height change of contact slider. It is changed by many parameters, contact stiffness. contact damping, all bearing stiffness ratio and so on. So computer simulation analysis is performed for knowing for what change of these parameters influences in flying height of contact slider. The practical recording zone surface is gotten by using SPM. In recording zone, flying height is simulated for each parameter. the settling time which the flying height of contact slider is lower than 10nm is analyzed over practical disk surface for changing each parameter. Through these results, the contact slider can be analyzed for more accuracy dynamic characteristics.

  • PDF

비정규 높이분포를 가진 3차원 거친 표면의 탄.소성접촉해석 (The Elastic-Plastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution)

  • 김태완;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.374-381
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have tile nogaussian height distrubution. So, in this study, elastic-plastic contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically. The contact simulation model takes into account the plastic deformation behaviors of asperities by setting a celing on their contact pressure at material hardness value. It will be shown that the performace variables such as real contact area fraction, plastic area fraction and average gap are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

차륜-레일 구름접촉 시 슬립율에 따른 접촉응력의 변화 해석 (Analysis of Contact Stress with Partial Slip in Wheel-rail Rolling Contact)

  • 이동형;서정원;권석진;최하영;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.643-648
    • /
    • 2011
  • Fatigue crack in most rails take place by rolling contact between wheel and rail in railway industry. Therefore, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. In this paper the steady-state rolling contact problem of KTX wheel and rail (UIC60) has been studied with three-dimensional finite element analysis. The variation of contact pressure and contact stresses on rolling contact surface were obtained using the finite element method. The three-dimensional distribution of contact stresses on the contact surface are investigated. Results show that the distribution of shear stress and contact stress (von Mises) on the contact surface varies rapidly as a result of the variation of stick-slip region. The contact stress at the leading edge is greater than at the trailing edge because of stick and slip phenomena.

  • PDF

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

핀-관 열교환기의 착상 거동에 대한 표면 접촉각의 영향 (The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger)

  • 이관수;지성;이동욱
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.95-101
    • /
    • 2000
  • The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger is investigated experimentally. It is shown that both heat exchangers with hydrophilic and hydrophobic surfaces appear to have a better thermal performance than bare aluminium heat exchanger, but the improvements are very small. There is a little increase in the amount of the frost deposited onto the heat exchanger with both hydrophilic and hydrophobic surface. However, the effect of contact angle on the frost density is observed ; the frost with high density forms on the heat exchanger with hydrophilic surface ; and the frost with low density is deposited onto the heat exchanger with hydrophobic surface when compared with the frost deposited onto the heat exchanger with bare aluminium surface. This may be attributed to the fact that the shape of water droplets which condense on the surface of heat exchanger at the early stage of frosting varies with contact angle, and thus makes a difference on the structure of frost formation. From the experiments with different relative humidity of inlet air, it is shown that the variations of operating parameter make no influence on the effect of surface contact angle on the frosting behavior in the heat exchanger.

  • PDF

표면 로울링시 가압력이 표면 조도에 미치는 영향 (An effect of load on surface roughness in surface rolling)

  • 강명순;김희남
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.935-944
    • /
    • 1987
  • 본 연구에서는 금속 표면의 정밀가공법을 연구대상으로 하여 구상흑연주철시 편을 미량의 테이퍼로 연삭가공하고 NACHI 6000ZZ 볼 베어링을 로울러로 사용하여 로 울러 다듬질을 행함으로써 로울러 지름 변화에 따른 가압력이 표면조도에 미치는 영향 을 구명하는데 목적을 두었으며 아울러 로울링(rolling)회수에 따른 펴면조도, 경도 및 직경의 변화량을 실험적으로 구명하였다.

마멸량의 대소에 따른 구름접촉 피로의 X선적 해석 (Discussion on Rolling Contact Fatigue with Wear Amount by X-ray Reflection)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제10권2호
    • /
    • pp.51-55
    • /
    • 1994
  • Rolling friction test was carried out to investigate the effect of the wear amount on rolling contact fatigue process in lubrication oil. The methods of this process were conducted at two Hertzian contact pressure and three slide ratio in each case by employing normalized and annealed carbon steel. During process of the rolling contact fatigue, the number of rotation until surface damage was occurred, the wear amount of rolling contact surface, and residual stress and half-value breadth using X-ray reflection on rolling contact surface were investigated. The result of this study shows that rolling contact fatigue process was directly influenced by wear trend and was confirmed by change of residual stress and half-value breadth on rolling contact surface.