• Title/Summary/Keyword: contact stresses

Search Result 316, Processing Time 0.029 seconds

Optimization Design on the Sealing Surface Profiles of Contacting Seal Units (접촉식 시일장치의 밀봉 접촉면 형상에 대한 최적화 설계연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.761-766
    • /
    • 2011
  • In this study, the optimized design profiles between a seal ring and a seal seat of contacting seal units has been proposed based on the FEM computed results. The maximum temperatures, the thermal distortions in axial and radial directions, and maximum contact normal stresses between a seal ring and a seal seat have been analyzed for various contact sealing profiles. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary sealing components. The seal surface model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a seal seat. This model with small contact surface of a seal ring produces high friction heating and contact stress. But the model III produces very small deformations of contacting sealing surface because of high convection heat transfer by cooling water circulation around the seal ring surface. Thus, the analysis results recommend a short width of a primary sealing unit rather than a big width of contact surfaces of contacting seal units for reducing a leakage and axial deformation of primary seal components.

A Study on the, Tooth Profile and Strength of WILDHABER-NOVIKOV Gear for high Power Transmission (고부하 동력 전달용 WILDHABER-NOVIKOV GEAR의 치형과 강도에 대한 연구)

  • Choe, Sang-Hoon;Park, Yoong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.85-94
    • /
    • 1984
  • The WILDHABER-NOVIKOV gear, one of the circular arc gears, has the large contact area between the convex and concave profiled mating teeth, moves from one end of the tooth to the other axially making a face contact. Hence it provides a large load capacity than the Involute gear and still satisfying the law of gearing. In order to analyze the gear stress, a photoelastic investigation was carried out. Photo elastic model of the WILDHABER-NOVIKOV gears were made of Araldite CT200 in this investigation. For both the many teeth gear and the few teeth gear segments, External gears of all addendum type WILDHABER-NOVIKOV gear and the involute gear were tested. Included were the models with various profile raddi at the same pressure angle 20 .deg. and module 13.5. The flank stresses and fillet stresses of these gears were observed in each case and compared with those of gears. From this investigation, the following results were obtained. A. In the case of having many teeth gear: As the profile radius is increased, the fillet stresses of the WILDHABER-NOVIKOV gear become the same or less than that of the INVOLUTE gea, and the flank stress becomes smaller than that of the INVOLUTE gear. Therefore the better design condition is satisfied with a large profile radius. B. IN the case of having a few teeth gear: As the profile radius is increased the flank stress of WILDHABER-NOVIKOV gear becomes smaller than that of the INVOLUTE gear, but the fillet stresses become larger than that of the INVOLUTE gear. Therefore the larger design condition is satisfied with small profile radius.

  • PDF

The use of finite element techniques for the deformation and stress of cylinder liner (유한요소법을 이용한 실린더 라이너의 변형과 응력에 관한 연구)

  • 오성환;조원행
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 1985
  • This study modeled in axisymmetric solid elements and analyzed the neighbourhood of the contact surface zone between liner and block in a diesel engine. The results of finite element analysis show that this model is deformed by bolt jointed load and pressure load and that stresses can vary much due to major dimensional changes in the joint area. Guidelines have been developed for selecting fillet radii and for the width of the contact area between liner and block.

  • PDF

Simulation of Ratcheting in Wheel-Rail Contact (차륜-레일의 구름접촉에 의한 라체팅 시뮬레이션)

  • Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1592-1597
    • /
    • 2009
  • Ratcheting is a cyclic accumulation of strain under a cyclic loading. It is a kind of mechanisms which generate cracks in rail steels. Though some experimental and numerical study has been performed, modeling of ratcheting is still a challenging problem. In this study, an elastic-plastic constitutive equation considering non-linear kinematic hardening and isotropic hardening was applied. Under the tangential stress of the contact stresses, a cyclic stress-strain relation was obtained by using the model. Strain under repeated cycles was accumulated.

  • PDF

Highly Accelerated Life Tests for Auto-Connector in Use-Environment (자동차 환경을 고려한 커넥터의 가속시험에 관한 연구)

  • Kim Jong-Gurl;Kim Jin-Hawn
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.229-235
    • /
    • 2004
  • This paper treats accelerated life tests for automotive connector. The contact resistance of connector is explained by some factors; the use time(calender time, real cycle), stresses and loads adapted in auto test. The relationships between contact resistance and some factors are compared and analyzed by regression models in various test conditions; field use-environment, manufacturer's test environment, and accelerated test condition. The consistency between of manufacturer's test and field test is examined. Finally, the future study on accelerated test for automotive connector is presented.

  • PDF

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Relationship between Concrete Pavement Stresses under Multi-Axle Interior and Edge Loads (중앙부와 모서리부 다축 차량 하중에 의한 콘크리트 도로포장의 응력 상관관계)

  • Kim Seong-Min;Cho Byoung-Hooi;Ryu Sung-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.143-153
    • /
    • 2006
  • The differences in the stress distribution and the critical stresses in concrete pavement systems were analyzed when the dual-wheel single-, tandem-, and tridem-axle loads were applied at the interior and the edge of the pavement. The effects of the concrete elastic modulus, slab thickness, foundation stiffness, and tire contact pressure were investigated. The stresses under the interior loads were calculated using the transformed field domain analysis and stresses under the edge loads were obtained using the finite element method. The critical stresses under the interior and the edge loads were compared with respect to various parameters and the equations to predict the ratio between the stresses under the edge and the interior loads were developed and verified. From this study, it was found that the trends of the changes in the critical concrete stresses under the interior and the edge loads were very similar and the critical stress locations under those loads were identical. The critical stress ratio, which was obtained by dividing the critical stress under the edge loads into that under the interior loads, decreased with increasing the number of axles. That ratio became larger as the concrete elastic modulus increased, the slab thickness increased, the foundation stiffness decreased, and the tire contact pressure increased.

  • PDF

Numerical Study of Thermal Deformations Due to Frictional Heatings in a Mechanical Face Seal (기계평면시일의 마찰열 변형거동에 관한 수치적 연구)

  • 김청균;함정윤
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 1998
  • The thermal deformation of the contact seal components has been analyzed using the finite element method. The temperature distributions, the thermal deformations and contact stresses are solved numerically for the contact surface with wear coning effects. The thermal deformation is always shown to distort the sealing surface along the radius of the seal ring. The results show that the deformations of inner radius side are significant compared with those of outer radius. Thus, the thermal deformation due to thermal heatings may promote the coned face wear or wear related thermal cracks at the contacting face of the seal ring component.