• Title/Summary/Keyword: contact stresses

Search Result 316, Processing Time 0.026 seconds

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

Study on Scoring of Hypoid Gear Set in Bus with Retarder (리타더 장착 버스 하이포이드 기어의 스코링에 관한 연구)

  • Yang, J.H.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • A retarder, as a supplementary brake system that is not friction-based, is frequently used in heavy-duty vehicles generally to slow the vehicles down on inclines. The electric retarder mainly used in a heavy-duty bus is generally placed between the transmission and the axle. The rotor inside the retarder system is attached to the axle. The operation of the retarder within a driven vehicle generates reverse torque due to coast driving force on hypoid gears in the differential gear system. By the reverse torque, scoring or scuffing on the hypoid gear teeth may directly occur. The scoring may be generated due to excessive contact stresses on the tooth surface. In this study, tooth contact stresses and contact patterns were analysed in order to investigate on the tooth scoring phenomenon using a finite element analysis program T900 in which the Hertzian contact stress formula was taken. Backlash, wear and surface finish were considered in the finite element simulation on the scoring.

  • PDF

Contact problem for a stringer plate weakened by a periodic system of variable width slots

  • Mir-Salim-zada, Minavar V.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.719-724
    • /
    • 2017
  • We consider an elastic isotropic plate reinforced by stringers and weakened by a periodic system of rectilinear slots of variable width. The variable width of the slots is comparable with elastic deformations. We study the case when the slots faces get in contact at some area. Determination of parameters characterizing the partial closure of variable width slots is reduced to the solution of a singular integral equation. The action of the stringers is replaced with unknown equivalent concentrated forces at the points of their connection with the plate. The contact stresses and contact zone sizes are found from the solution of the singular integral equation.

Contact Stress Analysis of Shrink-fitted Specimen considering Micro-slip (미소슬립을 고려한 압입 시편의 접촉응력 해석)

  • Lee Dong-hyong;Goo Byeong-choon;Lee Chan-woo;Jung Heung-che
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.632-637
    • /
    • 2004
  • In the shrink or press fitted shaft such as railway axle, fretting can occur by cyclic stress and micro-slippage due to local movement between the shaft and the hub. When the fretting occurs in the press fitted shaft, the fatigue strength remarkably decreases compared with that of without fretting. In this paper, the analysis of contact stresses in a press fitted shaft in contact with a hub was conducted by finite element method and the micro-slip according to the bending load was analyzed. It is found that the largest stress concentration and maximum slip amplitude of shrink fitted shaft are found at the edge of the interface and the distribution of contact stresses at the contact edge has largely influenced and coefficient of friction.

  • PDF

Study on the fatigue crack initiation life in rail wheel contact (철도차량용 휠과 레일의 피로균열시작 수명에 관한 연구)

  • 김태완;설광조;조용주
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.733-738
    • /
    • 2002
  • In this study, contact fatigue in wheel-rail contact is simulated. It is necessary to calculate contact stress and subsurface stresses accurately to predict fatigue behavior. Contact stresses are obtained by contact analysis of semi-infinite solid based on influence function and subsurface stress field obtained by using rectangular patch solutions. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when friction coefficient exceeds a specific value for all of three fatigue criteria.

  • PDF

An Analysis on the Residual Stress of Subsurface Zone due to Rolling Contact (회전접촉에 의해 발생하는 Subsurface Zone의 잔류응력에 관한 해석)

  • Gang, Gye-Myeong;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.58-64
    • /
    • 1993
  • The degree of work hardening in the subsurface zones varied with the experimental conditions under the rolling contact fatigue wear test of high carbon Cr-Ti alloy steel was evaluated by the distribution of residual stresses. Surface residual stresses before the test did not affect the wear property. Surface residual stresses after the test decreased by the increase of contact stress and running. velocity. but the maximum compressive residual stress and its depth of saturation in the subsurface zone increased. The relationship between these experimental results and the distribution of the theoritical shear stress was also discussed.

  • PDF

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.

AN EVALUATION OF ANGLES BETWEEN THE ALVEOLAR CREST BONE AND THE IMPLANT EFFECT ON THE IMPLANT CRESTAL AREA INDUCED STRESSES USING A FINITE ELEMENT METHOD (임플랜트와 경부골이 이루는 각도가 치경부 응력 발생에 미치는 영향)

  • Cho, Sung-Bum;Lee, Kyu-Bok;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.274-282
    • /
    • 2007
  • Statement of problem: Main consideration was given to the stresses at the site of implant entry into the cortical bone at the alveolar crest. As a suspectible factor affecting the occurrence of stress concentrations, the contact angle between the implant and the alveolar crest bone was addressed. Purpose: The purpose of this study is to evaluate angles between the alveolar crest bone and the implant effect on the implant crestal area induced stresses using a finite element method. Material and methods: Cylindrically shaped, standard size ITI implants entering into alveolar crest with four different contact angles of 0, 15, 30, and 45 deg. with the long axis of the implant were axisymmetrically modelled. Alterations of stresses around the implants were computed and compared at the cervical cortical bone. Results and conclusion: The results demonstrated that regardless of the difference of the implant/alveolar crest bone contact angles, stress concentration occurred at the cervical bone and the angle differences led to insignificant variations in stress level.

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.