• Title/Summary/Keyword: contact stresses

Search Result 316, Processing Time 0.027 seconds

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

A Study on Analysis of Residential Living Behavior for Realizing Lifestyle-engineering (라이프스타일공학 구현을 위한 주거공간 내 생활행위 분석연구)

  • Kwak, Yoon-Jung;Kim, Kyoung-Yeon;Lee, Yeun-Sook
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.125-130
    • /
    • 2007
  • Recently, the paradigms of residential planing are changing by digitalization, diversity and globalization. Since the infortance of residential living behavior and lifestyle have been recognizing, house can be perceived as a lifestyle engineering product which realizes lifestyle in a concrete way. The purpose of this research scrutinizes lifestyles through resident's value and preference of everyday living behavior in the residential, special contact. This research was conducted through the small group workshop to housewives divided into three groups such as the age 30-40s, 45-55s, 60-70s group. The workshop consisted of three stages, such as the awareness of family and home, the satisfaction of residential space, the value and preference of everyday living behavior. This study shows that Lifestyle characterize by ages, differences of living pattern and individual traits. The 30-40s' housewives relate to foster of a preschool child and it makes load of household. their characteristic is the preference of rest as releasing stresses. The 44-55s' housewives have self-oriented traits. they pursue own space and interaction with others. The 60-70s' housewives require natural interaction with family more than private space and an open view.

  • PDF

Design of a Composite Propeller Shaft with the Reduced Weights and Improved NVH (경량화 및 NVH 향상을 위한 복합재료 프로펠러 축의 설계)

  • Yoon, Hyung-Seok;Kim, Cheol;Moon, Myung-Soo;Oh, Sang-Yeob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.151-159
    • /
    • 2003
  • The front 2 pieces of the 3-piece steel propeller shaft installed on a 8.5-ton truck were redesigned with a 1 -piece composite propeller shaft with steel yokes and spline parts to get the reduction of weight and the improvement of NVH characteristics. Based on the analysis of bending vibration, strength and cure-induced residual stresses of the composite propeller shaft, proper composite materials and stacking sequences were selected. The composite propeller shaft requires a reliable joining method between the shaft and steel end parts through a steel connector. From 3-D contact stress analyses of the laminated composite shaft with bolted Joints, the 3-row mechanical joint which satisfies the torque transmission capability has been designed. Several full-scale composite shafts were fabricated and tested to verify the design analyses. The design requirements are shown to be satisfied. With the newly designed composite shaft, the weight reduction more than 50% and improvements in NVH characteristics have been achieved.

Stress Analyses of the Gimbal Bellows for a Lox Pipe (산화제 배관 김발 주름관 응력 해석)

  • Yoo, Jae-Han;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.477-480
    • /
    • 2011
  • The stress analyses of the 'U'-shaped multi-ply reinforced gimbal bellows under high pressure and rotational displacement loadings are performed at the room and cryogenic temperatures. The bellows are used for the Lox pipe line which connects the combustion chamber with the turbopump of a liquid rocket engine. The distributions of the stress, the strains and the contact pressures are obtained from the finite element analysis considering the geometric non-linearities of the contacts between the plies and the material one of the isotropic plasticity. Those are compared with the stress results from EJMA (Expansion Joint Manufacturing Association) standard. Also, the effects of the operating temperature and the reinforcing ring on the stresses are investigated.

  • PDF

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

A STUDY ON ELASTO-PLASTIC ANALYSIS OF SPHERICAL SHELL BY RIGID ELEMENT METHOD(II) - Elasto-Plastic Analysis of Spherical Shell with Open Stiff Ring - (강체요소법에 의한 구형쉘의 탄소성해석에 관한 면구(II) -개구부 링을 갖는 구형쉘의 탄성 및 탄소성 해석-)

  • 박강근;서삼열;한상율;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.24-29
    • /
    • 1988
  • In this paper, it is proposed hew the rigid element method suggested in the first paper can be applied to the elastic and elasto-plastic analysis of spherical shell with the open stiff ring. In the analytical model, the solution domain is divided into rectangular-shaped spherical bending elements. Each contact surface of two adjacent elements is interconnected with four elastic springs, and it is assumed that the internal forces are distritributed into springs. The 6 degrees of freedom of the element are placed in the center of elements, and the 6 cen-teroidal rigid displacements affect other elements through springs around elements. And then the solution domain is estimated by the behavior of elements and springs. In this study, these concepts are applied to the elastic and elasto-plastic analysis for the eight cases of the spherical shell according to the condition of stiff ring, the condion of loading and the size of opening. And then some numerical results such as the distribution of stresses, the force-displacement curves and the mode of fractures will he shown.

  • PDF

Development of Roll Shell for Aluminium Continuous Casters of High Strength and High Toughness (고강도${\cdot}$고인성의 알루미늄 연속 주조기용 롤쉘 개발)

  • Kim B. H.;Park Y. C.;Kim J. T.;Lee W. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.216-222
    • /
    • 2004
  • The caster roll shells have the good thermal conductivity and the low thermal expansion and have to exhibit high enough strength and good ductility at temperature up to $600^{\circ}C$. Thermal stress in particular is very high due to the contact with the liquid aluminium. The main stresses are of thermal origin, which bring a plastic fatigue on surface. This paper will represent one survey about the investigation of the failure of roll shells for continuous casters and an analysis using the simulation of the temperature distribution and the state of stress during hot rolling. Moreover, there will be a discussion on the roll shell of Mod. HAR 5 which is developed by heat treatment process. Mod. HAR 5 has advantages of high strength, high toughness and increased thermal stress resistance while maintaining the same productivity as the conventional roll.

  • PDF

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

Strengthening of hollow brick infill walls with expanded steel plates

  • Cumhur, Alper;Altundal, Adil;Aykac, Sabahattin;Aykac, Bengi
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.887-904
    • /
    • 2016
  • An efficient, economical and practical strengthening method for hollow brick infill walls was proposed and investigated in the present study, experimentally and numerically. This method aims at increasing the overall lateral strength and stiffness of the structure by increasing the contribution of the infill walls and providing the non-bearing components of the structure with the capability of absorbing earthquake-induced energy to minimize structural damage during seismic excitations. A total of eleven full-scale infill walls strengthened with expanded mild steel plates were tested under diagonal monotonic loading to simulate the loading condition of the non-bearing walls during an earthquake. The contact surface between the plates and the wall was increased with the help of plaster. Thickness of the plates bonded to both faces of the wall and the spacing of the bolts were adopted as test parameters. The experiments indicated that the plates were able to carry a major portion of the tensile stresses induced by the diagonal loads and provided the walls walls with a considerable confining effect. The composite action attained by the plates and the wall until yielding of the bolts increased the load capacities, rigidities, ductilities and energy-absorption capacities of the walls, considerably.