• 제목/요약/키워드: contact stresses

검색결과 316건 처리시간 0.024초

레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구 (An Analytic Study on the Contact Stress and Thermal Stress of Rails)

  • 구병춘;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF

직접 구동형 밸브트레인 시스템의 캠-팔로워 접촉면의 접촉 응력 해석 (The Analysis of the Contact Stresses at the Cam and Follower Interface in the Direct Acting Type Valve Train System)

  • 조명래;신흥주;한동철
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.289-294
    • /
    • 2000
  • This paper present the contact stresses, which considers the shear stress at the cam and follower interface in the direct acting type valve train system of a high speed engine. To determine the contact condition, the normal contact forces are calculated by using the lumped mass dynamic modeling. The line contact is considered between the cam and follower interface. The variations of dynamic stresses are presented as a function of camshaft rotational angle. Also the effects of various design parameters are investigated.

Calculating the Contact Stress Resulting from Lateral Movement of the Wheel on Rail by Applying Hertz Theory

  • Ashofteh, Roya Sadat
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.148-154
    • /
    • 2013
  • This article has tried to review the maximum contact stresses in the contact area of the wheel and rail as a result of lateral movement of the wheel on rail by taking advantage from Hertz theory. Since wheel movement on rail is accompanied by lateral movement due to wheel profile conisity, so the contact point of wheel and rail is not constant and the contact stresses are therefore changeable in every single moment. Since the shape of rail profile and rail inclination, wheel diameter and the mechanical properties of the wheel and rail are effective on the stresses of contact area, these parameters have been studied by applying Hertz theory. This article aims to calculate the contact stresses in different parts on the wheel surface by using Hertz theory.

고주기 피로 모델을 이용한 타원 접촉시 피로 수명에 관한 연구 (A Study on Fatigue Life under Elliptical Contact using High Cycle Fatigue Models)

  • 조용주;김태완;구영필
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.252-258
    • /
    • 2004
  • In this study, using high cycle fatigue (HCF) criteria, the simulation of rolling contact fatigue is conducted under elliptical contact. The HCF criteria fall into three categories: the critical plane approach, the stress invariant approach and the approach based on the mesoscopic scale. The accurate calculation of contact stresses and subsurface stresses is essential to the prediction of crack initiation life. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when the friction coefficient exceeds a specific value for all of three fatigue criteria.

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

3차원 유한요소법을 이용한 정상상태의 구름접촉해석 (Three-Dimensional Steady-state Rolling Contact Analysis using Finite Element Method)

  • 이동형;서정원;권석진;함영삼
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.565-571
    • /
    • 2011
  • Because most fatigue cracks in wheel and rail take place by rolling contact of wheel and rail in railroad industry, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. This paper presents an approach to steady-state rolling contact problem of three-dimensional contact bodies, with or without tangential force, based on the finite element method. The steady-state conditions are controlled by the applied relative slip and tangential force. The three-dimensional distribution of tangential traction and contact stresses on the contact surface are investigated. Results show that the distribution of tangential traction and contact stresses on the contact surface varies rapidly as a result of the variation of stick-slip region. The tangential traction is very close in form to Carter's distribution.

Contact analysis in functionally graded layer loaded with circular two punches

  • Muhammed T. Polat;Alper Polat
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.13-25
    • /
    • 2024
  • In this study, contact analysis in a functionally graded (FG) layer loaded with two circular punches is solved using the finite element method (FEM). The problem is consisted of a functionally graded layer that resting on an elastic semi-infinite plane and is loaded with two rigid punches of circular geometry. External loads P and Q are transferred to the layer via two rigid punches. The finite element model of the functionally graded layer is created using the ANSYS package program and a 2-dimensional analysis of the problem is analyzed. The contact lengths, obtained as a result of the analysis are compared with the analytical solution in the literature. In the study, the effects of parameters such as distances between punches, loads, inhomogenity parameter on contact zones, initial separation loads and distances, normal stresses, stresses across depth and contact stresses are investigated. As a result, in this study, it can be said that the magnitude of the stresses occurring in the FG layer is less than the homogeneous layer, therefore the life of FG materials will be longer than the homogeneous layer. When the distance between the punches is 2.25, the initial separation distance is 6.98, and when the distance between the punches is 4, the initial separation distance decreases to 6.10. In addition, when the load increased in the second punch, the initial separation load decreased from 55 to 18. The obtained results are presented in the form of graphs and tables.

타이어 공기압이 언더트레이드면의 3방향 접지압에 미치는 영향 (Tire Inflation Pressures Effects on 3 Directional Contact Pressures Between Soil and Undertread for a Tractor Tire)

  • 전형규;이규승
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.123-130
    • /
    • 2001
  • The research described in this paper was aimed toward improving the understanding of the interaction of tire inflation pressure and the soil-tire interface stresses. A three-directional stress transducer was developed to measure stress distribution on undertread for a tractor tire. The transducer can directly measure three-directional stresses (normal stress, tangental stress and lateral stress and lateral stress) simultaneously and has both strong structure and high sensitivity, which is not changed by the abrasion of the detecting plate. Measurements of soil-undertread interface stresses were made at tire center on undertread on a 12.4-R24 radial tractor tire opeated at three combinations of a dynamic load (11.8kN) and three inflation pressures (59kPa, 108kPa and 157kPa). These measurements showed that as inflation pressure increased, the soil-undertread interface stresses increased. The results of three stresses comparisons were shown that the peak normal stresses were considerably higher than the tangential peak stresses and the peak lateral stresses.

  • PDF

연결고정, 인접면 접촉강도 및 치관길이에 따른 엔도포어 임플란트를 이용한 고정성 국소의치의 광탄성 응력 분석 (A PHOTOELASTIC STRESS ANALYSIS OF FIXED PARTIAL DENTURES WITH ENDOPOREIMPLANTS ACCORDING TO SPLINTING, CONTACT TIGHTNESS, AND CROWN LENGTH)

  • 정회열;최민호;김유리;조혜원
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.425-442
    • /
    • 2004
  • Statement of problem: A difficulty in achieving a passive-fitting prosthesis can be overcome by individual crown restoation of multiple implants. But individualized crown has another difficulty in control of contact tightness and stress distribution. Purpose: This in vitro study is to evaluate the stress distribution and the magnitude in the supporting tissues around Endopore implants with different crown lengths, interproximal contact tightness, and the splinting effects. Material & methods: Three Endopore implants($4.1{\times}9mm$) were placed in the mandibular posterior edentulous area distal to the canine and photoelastic model was made with PL-2 resin(Measurements Group, Raleigh, USA). Restorations were fabricated in two crown lengths: 9, 13 mm. For non-splinted restorations, individual crowns were fabricated on three custom-milled titanium abutments. After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m$), and heavy($80{\mu}m$). For splinted restorations, 3-unit fixed partial dentures were fabricated. This study was examined under simulated non-loaded and loaded conditions(6.8 kg). Photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure. Results: 1. When restorations were not splinted, the more interproximal contact tightness was increased among the three implants, the more stress was shown in the cervical region of each implant. When crown length was increased, stresses tended to increase in the apex of implants but there were little differences in stress fringes. 2. When nonsplinted restorations were loaded on the first or third implant, stresses were increased in the apex and cervical region of loaded implant. Regardless of interproximal contact tightness level, stresses were not distributed among the three implants. But with tighter interproximal contact, stresses were increased in the cervical region of loaded first or third implant. 3. When the nonsplinted restorations were not loaded, there were little stresses on the supporting structure of implants, but low level stresses were shown in the splinted restorations even after sectioning and soldering. 4. With splinted restorations, there were little differences in stresses between different crown lengths. When splinted restorations were loaded, stresses were increased slightly on the loaded implant, but relatively even stress distribution occurred among the three implants. Conclusions: Splinting the crowns of adjacent implants is recommended for Endopore implants under the overloading situation.